Spaces:
Running
Running
File size: 4,744 Bytes
6daac1d 2852c90 2be14bd 1be9899 dbe3ba4 28de64c a5ffabc 0c9548a 4c11732 b1622cb 4c11732 2be14bd 9a2af53 239c804 4c11732 65aa3e7 4c11732 8e24199 1be9899 4c11732 d2931fe 8e24199 d2931fe 8e24199 1be9899 c724805 d2931fe 2be14bd 1be9899 4c11732 8e24199 1be9899 4c11732 2852c90 d2931fe 8e24199 d2931fe 2be14bd 4c11732 8e24199 d2931fe 4c11732 d2931fe 8e24199 d2931fe 2be14bd 4c11732 8e24199 1be9899 4c11732 8e24199 d2931fe 8e24199 d2931fe 8e24199 4c11732 d2931fe 8e24199 4c11732 2be14bd 4c11732 2852c90 4c11732 2be14bd 4c11732 2be14bd d2931fe 4c11732 2be14bd d2931fe 4c11732 7e5ddc3 d2931fe 4c11732 2852c90 2be14bd 4c11732 ebf76ba 4c11732 6daac1d 4c11732 01cb6f1 4c11732 ebf76ba 4c11732 ebf76ba 4c11732 01cb6f1 4c11732 01cb6f1 4c11732 ebf76ba 4c11732 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
from fastapi import FastAPI, File, UploadFile
import fitz # PyMuPDF for PDF parsing
from tika import parser # Apache Tika for document parsing
import openpyxl
from pptx import Presentation
import torch
from PIL import Image
from transformers import pipeline
import gradio as gr
import numpy as np
import easyocr
# Initialize FastAPI (not needed for HF Spaces, but kept for flexibility)
app = FastAPI()
print(f"π Loading models")
doc_qa_pipeline = pipeline("text2text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", device=-1)
image_captioning_pipeline = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
print("β
Models loaded")
# Initialize OCR Model (CPU Mode)
reader = easyocr.Reader(["en"], gpu=False)
# Allowed File Extensions
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}
def validate_file_type(file):
ext = file.filename.split(".")[-1].lower()
print(f"π Validating file type: {ext}")
if ext not in ALLOWED_EXTENSIONS:
return f"β Unsupported file format: {ext}"
return None
# Function to truncate text to 450 tokens
def truncate_text(text, max_tokens=450):
words = text.split()
truncated = " ".join(words[:max_tokens])
print(f"βοΈ Truncated text to {max_tokens} tokens.")
return truncated
# Document Text Extraction Functions
def extract_text_from_pdf(pdf_bytes):
try:
print("π Extracting text from PDF...")
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
text = "\n".join([page.get_text("text") for page in doc])
return text if text else "β οΈ No text found."
except Exception as e:
return f"β Error reading PDF: {str(e)}"
def extract_text_with_tika(file_bytes):
try:
print("π Extracting text with Tika...")
parsed = parser.from_buffer(file_bytes)
return parsed.get("content", "β οΈ No text found.").strip()
except Exception as e:
return f"β Error reading document: {str(e)}"
def extract_text_from_excel(excel_bytes):
try:
print("π Extracting text from Excel...")
wb = openpyxl.load_workbook(excel_bytes, read_only=True)
text = []
for sheet in wb.worksheets:
for row in sheet.iter_rows(values_only=True):
text.append(" ".join(map(str, row)))
return "\n".join(text) if text else "β οΈ No text found."
except Exception as e:
return f"β Error reading Excel: {str(e)}"
def answer_question_from_document(file: UploadFile, question: str):
print("π Processing document for QA...")
validation_error = validate_file_type(file)
if validation_error:
return validation_error
file_ext = file.filename.split(".")[-1].lower()
file_bytes = file.file.read()
if file_ext == "pdf":
text = extract_text_from_pdf(file_bytes)
elif file_ext in ["docx", "pptx"]:
text = extract_text_with_tika(file_bytes)
elif file_ext == "xlsx":
text = extract_text_from_excel(file_bytes)
else:
return "β Unsupported file format!"
if not text:
return "β οΈ No text extracted from the document."
truncated_text = truncate_text(text)
print("π€ Generating response...")
response = doc_qa_pipeline(f"Question: {question}\nContext: {truncated_text}")
return response[0]["generated_text"]
def answer_question_from_image(image, question):
try:
print("πΌοΈ Processing image for QA...")
if isinstance(image, np.ndarray): # If it's a NumPy array from Gradio
image = Image.fromarray(image) # Convert to PIL Image
print("πΌοΈ Generating caption for image...")
caption = image_captioning_pipeline(image)[0]['generated_text']
print("π€ Answering question based on caption...")
response = doc_qa_pipeline(f"Question: {question}\nContext: {caption}")
return response[0]["generated_text"]
except Exception as e:
return f"β Error processing image: {str(e)}"
# Gradio UI for Document & Image QA
doc_interface = gr.Interface(
fn=answer_question_from_document,
inputs=[gr.File(label="π Upload Document"), gr.Textbox(label="π¬ Ask a Question")],
outputs="text",
title="π AI Document Question Answering"
)
img_interface = gr.Interface(
fn=answer_question_from_image,
inputs=[gr.Image(label="πΌοΈ Upload Image"), gr.Textbox(label="π¬ Ask a Question")],
outputs="text",
title="πΌοΈ AI Image Question Answering"
)
# Launch Gradio
app = gr.TabbedInterface([doc_interface, img_interface], ["π Document QA", "πΌοΈ Image QA"])
if __name__ == "__main__":
app.launch(share=True) # For Hugging Face Spaces
|