Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from fastapi import FastAPI, File, UploadFile
|
2 |
import fitz # PyMuPDF for PDF parsing
|
3 |
from tika import parser # Apache Tika for document parsing
|
4 |
import openpyxl
|
@@ -127,6 +127,142 @@ doc_interface = gr.Interface(fn=answer_question_from_document, inputs=[gr.File()
|
|
127 |
demo = gr.TabbedInterface([doc_interface], ["Document QA"])
|
128 |
app = gr.mount_gradio_app(app, demo, path="/")
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
@app.get("/")
|
131 |
def home():
|
132 |
return RedirectResponse(url="/")
|
|
|
1 |
+
"""from fastapi import FastAPI, File, UploadFile
|
2 |
import fitz # PyMuPDF for PDF parsing
|
3 |
from tika import parser # Apache Tika for document parsing
|
4 |
import openpyxl
|
|
|
127 |
demo = gr.TabbedInterface([doc_interface], ["Document QA"])
|
128 |
app = gr.mount_gradio_app(app, demo, path="/")
|
129 |
|
130 |
+
@app.get("/")
|
131 |
+
def home():
|
132 |
+
return RedirectResponse(url="/")
|
133 |
+
"""
|
134 |
+
from fastapi import FastAPI, File, UploadFile
|
135 |
+
import fitz # PyMuPDF for PDF parsing
|
136 |
+
import openpyxl
|
137 |
+
from pptx import Presentation
|
138 |
+
import torch
|
139 |
+
from torchvision import transforms
|
140 |
+
from torchvision.models.detection import fasterrcnn_resnet50_fpn
|
141 |
+
from PIL import Image
|
142 |
+
from transformers import pipeline
|
143 |
+
import gradio as gr
|
144 |
+
from fastapi.responses import RedirectResponse
|
145 |
+
import numpy as np
|
146 |
+
import docx
|
147 |
+
|
148 |
+
# Initialize FastAPI
|
149 |
+
print("π FastAPI server is starting...")
|
150 |
+
app = FastAPI()
|
151 |
+
|
152 |
+
# Load AI Model for Question Answering (DeepSeek-V2-Chat)
|
153 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
154 |
+
|
155 |
+
# Preload Hugging Face model
|
156 |
+
print(f"π Loading models")
|
157 |
+
qa_pipeline = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", device=-1)
|
158 |
+
|
159 |
+
# Load Pretrained Object Detection Model (Torchvision)
|
160 |
+
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
|
161 |
+
weights = FasterRCNN_ResNet50_FPN_Weights.DEFAULT
|
162 |
+
model = fasterrcnn_resnet50_fpn(weights=weights)
|
163 |
+
model.eval()
|
164 |
+
|
165 |
+
# Image Transformations
|
166 |
+
transform = transforms.Compose([
|
167 |
+
transforms.ToTensor()
|
168 |
+
])
|
169 |
+
|
170 |
+
# Allowed File Extensions
|
171 |
+
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}
|
172 |
+
|
173 |
+
def validate_file_type(file):
|
174 |
+
ext = file.name.split(".")[-1].lower()
|
175 |
+
print(f"π Validating file type: {ext}")
|
176 |
+
if ext not in ALLOWED_EXTENSIONS:
|
177 |
+
return f"β Unsupported file format: {ext}"
|
178 |
+
return None
|
179 |
+
|
180 |
+
# Function to truncate text to 450 tokens
|
181 |
+
def truncate_text(text, max_tokens=450):
|
182 |
+
words = text.split()
|
183 |
+
truncated = " ".join(words[:max_tokens])
|
184 |
+
print(f"βοΈ Truncated text to {max_tokens} tokens.")
|
185 |
+
return truncated
|
186 |
+
|
187 |
+
# Document Text Extraction Functions
|
188 |
+
def extract_text_from_pdf(pdf_file):
|
189 |
+
try:
|
190 |
+
print("π Extracting text from PDF...")
|
191 |
+
doc = fitz.open(pdf_file)
|
192 |
+
text = "\n".join([page.get_text("text") for page in doc])
|
193 |
+
print("β
PDF text extraction completed.")
|
194 |
+
return text if text else "β οΈ No text found."
|
195 |
+
except Exception as e:
|
196 |
+
return f"β Error reading PDF: {str(e)}"
|
197 |
+
|
198 |
+
def extract_text_from_docx(docx_file):
|
199 |
+
try:
|
200 |
+
print("π Extracting text from DOCX...")
|
201 |
+
doc = docx.Document(docx_file)
|
202 |
+
text = "\n".join([para.text for para in doc.paragraphs])
|
203 |
+
print("β
DOCX text extraction completed.")
|
204 |
+
return text if text else "β οΈ No text found."
|
205 |
+
except Exception as e:
|
206 |
+
return f"β Error reading DOCX: {str(e)}"
|
207 |
+
|
208 |
+
def extract_text_from_pptx(pptx_file):
|
209 |
+
try:
|
210 |
+
print("π Extracting text from PPTX...")
|
211 |
+
ppt = Presentation(pptx_file)
|
212 |
+
text = []
|
213 |
+
for slide in ppt.slides:
|
214 |
+
for shape in slide.shapes:
|
215 |
+
if hasattr(shape, "text"):
|
216 |
+
text.append(shape.text)
|
217 |
+
print("β
PPTX text extraction completed.")
|
218 |
+
return "\n".join(text) if text else "β οΈ No text found."
|
219 |
+
except Exception as e:
|
220 |
+
return f"β Error reading PPTX: {str(e)}"
|
221 |
+
|
222 |
+
def extract_text_from_excel(excel_file):
|
223 |
+
try:
|
224 |
+
print("π Extracting text from Excel...")
|
225 |
+
wb = openpyxl.load_workbook(excel_file, read_only=True)
|
226 |
+
text = []
|
227 |
+
for sheet in wb.worksheets:
|
228 |
+
for row in sheet.iter_rows(values_only=True):
|
229 |
+
text.append(" ".join(map(str, row)))
|
230 |
+
print("β
Excel text extraction completed.")
|
231 |
+
return "\n".join(text) if text else "β οΈ No text found."
|
232 |
+
except Exception as e:
|
233 |
+
return f"β Error reading Excel: {str(e)}"
|
234 |
+
|
235 |
+
def answer_question_from_document(file, question):
|
236 |
+
print("π Processing document for QA...")
|
237 |
+
validation_error = validate_file_type(file)
|
238 |
+
if validation_error:
|
239 |
+
return validation_error
|
240 |
+
file_ext = file.name.split(".")[-1].lower()
|
241 |
+
if file_ext == "pdf":
|
242 |
+
text = extract_text_from_pdf(file)
|
243 |
+
elif file_ext == "docx":
|
244 |
+
text = extract_text_from_docx(file)
|
245 |
+
elif file_ext == "pptx":
|
246 |
+
text = extract_text_from_pptx(file)
|
247 |
+
elif file_ext == "xlsx":
|
248 |
+
text = extract_text_from_excel(file)
|
249 |
+
else:
|
250 |
+
return "β Unsupported file format!"
|
251 |
+
if not text:
|
252 |
+
return "β οΈ No text extracted from the document."
|
253 |
+
truncated_text = truncate_text(text)
|
254 |
+
print("π€ Generating response...")
|
255 |
+
response = qa_pipeline(f"Question: {question}\nContext: {truncated_text}")
|
256 |
+
print("β
AI response generated.")
|
257 |
+
return response[0]["generated_text"]
|
258 |
+
|
259 |
+
print("β
Models loaded successfully.")
|
260 |
+
|
261 |
+
doc_interface = gr.Interface(fn=answer_question_from_document, inputs=[gr.File(), gr.Textbox()], outputs="text")
|
262 |
+
|
263 |
+
demo = gr.TabbedInterface([doc_interface], ["Document QA"])
|
264 |
+
app = gr.mount_gradio_app(app, demo, path="/")
|
265 |
+
|
266 |
@app.get("/")
|
267 |
def home():
|
268 |
return RedirectResponse(url="/")
|