Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,11 +3,8 @@ import fitz # PyMuPDF for PDF parsing
|
|
3 |
from tika import parser # Apache Tika for document parsing
|
4 |
import openpyxl
|
5 |
from pptx import Presentation
|
6 |
-
import torch
|
7 |
-
from torchvision import transforms
|
8 |
-
from torchvision.models.detection import fasterrcnn_resnet50_fpn
|
9 |
from PIL import Image
|
10 |
-
from transformers import pipeline
|
11 |
import gradio as gr
|
12 |
from fastapi.responses import RedirectResponse
|
13 |
import numpy as np
|
@@ -20,62 +17,49 @@ print(f"π Loading models")
|
|
20 |
|
21 |
doc_qa_pipeline = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
22 |
image_captioning_pipeline = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
23 |
-
print("
|
|
|
24 |
# Initialize OCR Model (Lazy Load)
|
25 |
reader = easyocr.Reader(["en"], gpu=True)
|
26 |
|
27 |
# Allowed File Extensions
|
28 |
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}
|
29 |
|
30 |
-
def validate_file_type(file):
|
31 |
-
ext = file.
|
32 |
print(f"π Validating file type: {ext}")
|
33 |
if ext not in ALLOWED_EXTENSIONS:
|
34 |
return f"β Unsupported file format: {ext}"
|
35 |
return None
|
36 |
|
37 |
-
# Function to truncate text to 450 tokens
|
38 |
def truncate_text(text, max_tokens=450):
|
39 |
words = text.split()
|
40 |
truncated = " ".join(words[:max_tokens])
|
41 |
print(f"βοΈ Truncated text to {max_tokens} tokens.")
|
42 |
return truncated
|
43 |
|
44 |
-
|
45 |
-
def extract_text_from_pdf(pdf_file):
|
46 |
try:
|
47 |
-
print("
|
48 |
-
|
|
|
49 |
text = "\n".join([page.get_text("text") for page in doc])
|
50 |
return text if text else "β οΈ No text found."
|
51 |
except Exception as e:
|
52 |
return f"β Error reading PDF: {str(e)}"
|
53 |
|
54 |
-
def extract_text_with_tika(file):
|
55 |
try:
|
56 |
print("π Extracting text with Tika...")
|
57 |
-
parsed = parser.from_buffer(file)
|
58 |
return parsed.get("content", "β οΈ No text found.").strip()
|
59 |
except Exception as e:
|
60 |
return f"β Error reading document: {str(e)}"
|
61 |
|
62 |
-
def
|
63 |
-
try:
|
64 |
-
print("π Extracting text from PPTX...")
|
65 |
-
ppt = Presentation(pptx_file)
|
66 |
-
text = []
|
67 |
-
for slide in ppt.slides:
|
68 |
-
for shape in slide.shapes:
|
69 |
-
if hasattr(shape, "text"):
|
70 |
-
text.append(shape.text)
|
71 |
-
return "\n".join(text) if text else "β οΈ No text found."
|
72 |
-
except Exception as e:
|
73 |
-
return f"β Error reading PPTX: {str(e)}"
|
74 |
-
|
75 |
-
def extract_text_from_excel(excel_file):
|
76 |
try:
|
77 |
-
print("
|
78 |
-
wb = openpyxl.load_workbook(excel_file, read_only=True)
|
79 |
text = []
|
80 |
for sheet in wb.worksheets:
|
81 |
for row in sheet.iter_rows(values_only=True):
|
@@ -84,13 +68,14 @@ def extract_text_from_excel(excel_file):
|
|
84 |
except Exception as e:
|
85 |
return f"β Error reading Excel: {str(e)}"
|
86 |
|
87 |
-
def answer_question_from_document(file, question):
|
88 |
print("π Processing document for QA...")
|
89 |
validation_error = validate_file_type(file)
|
90 |
if validation_error:
|
91 |
return validation_error
|
92 |
|
93 |
-
file_ext = file.
|
|
|
94 |
if file_ext == "pdf":
|
95 |
text = extract_text_from_pdf(file)
|
96 |
elif file_ext in ["docx", "pptx"]:
|
@@ -109,25 +94,22 @@ def answer_question_from_document(file, question):
|
|
109 |
|
110 |
return response[0]["generated_text"]
|
111 |
|
112 |
-
def answer_question_from_image(image, question):
|
113 |
try:
|
114 |
-
print("
|
115 |
-
if isinstance(image, np.ndarray):
|
116 |
-
image = Image.fromarray(image) # Convert to PIL Image
|
117 |
-
|
118 |
-
print("
|
119 |
caption = image_captioning_pipeline(image)[0]['generated_text']
|
120 |
|
121 |
print("π€ Answering question based on caption...")
|
122 |
response = doc_qa_pipeline(f"Question: {question}\nContext: {caption}")
|
123 |
|
124 |
return response[0]["generated_text"]
|
125 |
-
|
126 |
except Exception as e:
|
127 |
return f"β Error processing image: {str(e)}"
|
128 |
|
129 |
-
|
130 |
-
# Gradio UI for Document & Image QA
|
131 |
doc_interface = gr.Interface(
|
132 |
fn=answer_question_from_document,
|
133 |
inputs=[gr.File(label="π Upload Document"), gr.Textbox(label="π¬ Ask a Question")],
|
@@ -137,15 +119,18 @@ doc_interface = gr.Interface(
|
|
137 |
|
138 |
img_interface = gr.Interface(
|
139 |
fn=answer_question_from_image,
|
140 |
-
inputs=[gr.Image(label="
|
141 |
outputs="text",
|
142 |
-
title="
|
143 |
)
|
144 |
|
145 |
-
|
146 |
-
demo = gr.TabbedInterface([doc_interface, img_interface], ["π Document QA", "πΌοΈ Image QA"])
|
147 |
-
app = gr.mount_gradio_app(app, demo, path="/")
|
148 |
|
149 |
@app.get("/")
|
150 |
def home():
|
151 |
return RedirectResponse(url="/")
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from tika import parser # Apache Tika for document parsing
|
4 |
import openpyxl
|
5 |
from pptx import Presentation
|
|
|
|
|
|
|
6 |
from PIL import Image
|
7 |
+
from transformers import pipeline
|
8 |
import gradio as gr
|
9 |
from fastapi.responses import RedirectResponse
|
10 |
import numpy as np
|
|
|
17 |
|
18 |
doc_qa_pipeline = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
19 |
image_captioning_pipeline = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
20 |
+
print("Models loaded")
|
21 |
+
|
22 |
# Initialize OCR Model (Lazy Load)
|
23 |
reader = easyocr.Reader(["en"], gpu=True)
|
24 |
|
25 |
# Allowed File Extensions
|
26 |
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}
|
27 |
|
28 |
+
def validate_file_type(file: UploadFile):
|
29 |
+
ext = file.filename.split(".")[-1].lower()
|
30 |
print(f"π Validating file type: {ext}")
|
31 |
if ext not in ALLOWED_EXTENSIONS:
|
32 |
return f"β Unsupported file format: {ext}"
|
33 |
return None
|
34 |
|
|
|
35 |
def truncate_text(text, max_tokens=450):
|
36 |
words = text.split()
|
37 |
truncated = " ".join(words[:max_tokens])
|
38 |
print(f"βοΈ Truncated text to {max_tokens} tokens.")
|
39 |
return truncated
|
40 |
|
41 |
+
def extract_text_from_pdf(pdf_file: UploadFile):
|
|
|
42 |
try:
|
43 |
+
print("π Extracting text from PDF...")
|
44 |
+
pdf_bytes = pdf_file.file.read()
|
45 |
+
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
|
46 |
text = "\n".join([page.get_text("text") for page in doc])
|
47 |
return text if text else "β οΈ No text found."
|
48 |
except Exception as e:
|
49 |
return f"β Error reading PDF: {str(e)}"
|
50 |
|
51 |
+
def extract_text_with_tika(file: UploadFile):
|
52 |
try:
|
53 |
print("π Extracting text with Tika...")
|
54 |
+
parsed = parser.from_buffer(file.file.read())
|
55 |
return parsed.get("content", "β οΈ No text found.").strip()
|
56 |
except Exception as e:
|
57 |
return f"β Error reading document: {str(e)}"
|
58 |
|
59 |
+
def extract_text_from_excel(excel_file: UploadFile):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
try:
|
61 |
+
print("π Extracting text from Excel...")
|
62 |
+
wb = openpyxl.load_workbook(excel_file.file, read_only=True)
|
63 |
text = []
|
64 |
for sheet in wb.worksheets:
|
65 |
for row in sheet.iter_rows(values_only=True):
|
|
|
68 |
except Exception as e:
|
69 |
return f"β Error reading Excel: {str(e)}"
|
70 |
|
71 |
+
def answer_question_from_document(file: UploadFile, question: str):
|
72 |
print("π Processing document for QA...")
|
73 |
validation_error = validate_file_type(file)
|
74 |
if validation_error:
|
75 |
return validation_error
|
76 |
|
77 |
+
file_ext = file.filename.split(".")[-1].lower()
|
78 |
+
|
79 |
if file_ext == "pdf":
|
80 |
text = extract_text_from_pdf(file)
|
81 |
elif file_ext in ["docx", "pptx"]:
|
|
|
94 |
|
95 |
return response[0]["generated_text"]
|
96 |
|
97 |
+
def answer_question_from_image(image, question: str):
|
98 |
try:
|
99 |
+
print("π¨ Converting image for processing...")
|
100 |
+
if isinstance(image, np.ndarray):
|
101 |
+
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
102 |
+
|
103 |
+
print("π¨ Generating caption for image...")
|
104 |
caption = image_captioning_pipeline(image)[0]['generated_text']
|
105 |
|
106 |
print("π€ Answering question based on caption...")
|
107 |
response = doc_qa_pipeline(f"Question: {question}\nContext: {caption}")
|
108 |
|
109 |
return response[0]["generated_text"]
|
|
|
110 |
except Exception as e:
|
111 |
return f"β Error processing image: {str(e)}"
|
112 |
|
|
|
|
|
113 |
doc_interface = gr.Interface(
|
114 |
fn=answer_question_from_document,
|
115 |
inputs=[gr.File(label="π Upload Document"), gr.Textbox(label="π¬ Ask a Question")],
|
|
|
119 |
|
120 |
img_interface = gr.Interface(
|
121 |
fn=answer_question_from_image,
|
122 |
+
inputs=[gr.Image(label="π¨ Upload Image"), gr.Textbox(label="π¬ Ask a Question")],
|
123 |
outputs="text",
|
124 |
+
title="π¨ AI Image Question Answering"
|
125 |
)
|
126 |
|
127 |
+
demo = gr.TabbedInterface([doc_interface, img_interface], ["π Document QA", "π¨ Image QA"])
|
|
|
|
|
128 |
|
129 |
@app.get("/")
|
130 |
def home():
|
131 |
return RedirectResponse(url="/")
|
132 |
+
|
133 |
+
if __name__ == "__main__":
|
134 |
+
demo.launch()
|
135 |
+
import uvicorn
|
136 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|