File size: 7,852 Bytes
90d7edb 8edfc45 ee7ace1 d2285c1 a1f36a7 ee7ace1 d2285c1 ee7ace1 def395e 90d7edb def395e ee7ace1 8edfc45 a1f36a7 ee7ace1 9cacd96 ee7ace1 d2285c1 ee7ace1 d2285c1 ee7ace1 d2285c1 ee7ace1 d2285c1 ee7ace1 8edfc45 d2285c1 8edfc45 ee7ace1 def395e ee7ace1 8edfc45 ee7ace1 8edfc45 c624cbc def395e 9cacd96 def395e d2285c1 def395e 9cacd96 def395e 8edfc45 def395e 8edfc45 def395e 8edfc45 def395e ee7ace1 a1f36a7 8edfc45 a1f36a7 8edfc45 9cacd96 def395e 8edfc45 def395e 8edfc45 ee7ace1 a1f36a7 8edfc45 9cacd96 ee7ace1 9cacd96 ee7ace1 8edfc45 d2285c1 ee7ace1 d2285c1 ee7ace1 a1f36a7 8edfc45 ee7ace1 8edfc45 d2285c1 8edfc45 ee7ace1 8edfc45 a1f36a7 8edfc45 a1f36a7 8edfc45 ee7ace1 a1f36a7 8edfc45 a1f36a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import gradio as gr
import pytesseract
from PIL import Image
from transformers import pipeline
import re
from langdetect import detect
from deep_translator import GoogleTranslator
import shap
import requests
import json
# Translator instance
translator = GoogleTranslator(source="auto", target="es")
# 1. Load separate keywords for SMiShing and Other Scam (assumed in English)
with open("smishing_keywords.txt", "r", encoding="utf-8") as f:
SMISHING_KEYWORDS = [line.strip().lower() for line in f if line.strip()]
with open("other_scam_keywords.txt", "r", encoding="utf-8") as f:
OTHER_SCAM_KEYWORDS = [line.strip().lower() for line in f if line.strip()]
# 2. Zero-Shot Classification Pipeline
model_name = "joeddav/xlm-roberta-large-xnli"
classifier = pipeline("zero-shot-classification", model=model_name)
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
# SHAP explainer setup
explainer = shap.Explainer(classifier)
# Prompt the user for their Google Safe Browsing API key
def get_api_key():
"""Prompt the user for their API key."""
api_key = input("Please enter your Google Safe Browsing API key: ").strip()
if not api_key:
raise ValueError("API key is required to use the application.")
return api_key
SAFE_BROWSING_API_KEY = get_api_key()
SAFE_BROWSING_URL = "https://safebrowsing.googleapis.com/v4/threatMatches:find"
def check_url_with_google_safebrowsing(url):
"""
Check a URL against Google's Safe Browsing API.
"""
payload = {
"client": {
"clientId": "your-client-id",
"clientVersion": "1.0"
},
"threatInfo": {
"threatTypes": ["MALWARE", "SOCIAL_ENGINEERING", "UNWANTED_SOFTWARE", "POTENTIALLY_HARMFUL_APPLICATION"],
"platformTypes": ["ANY_PLATFORM"],
"threatEntryTypes": ["URL"],
"threatEntries": [
{"url": url}
]
}
}
try:
response = requests.post(
SAFE_BROWSING_URL,
params={"key": SAFE_BROWSING_API_KEY},
json=payload
)
response_data = response.json()
if "matches" in response_data:
return True # URL is flagged as malicious
return False # URL is safe
except Exception as e:
print(f"Error checking URL with Safe Browsing API: {e}")
return False
def get_keywords_by_language(text: str):
"""
Detect language using `langdetect` and translate keywords if needed.
"""
snippet = text[:200] # Use a snippet for detection
try:
detected_lang = detect(snippet)
except Exception:
detected_lang = "en" # Default to English if detection fails
if detected_lang == "es":
smishing_in_spanish = [
translator.translate(kw).lower() for kw in SMISHING_KEYWORDS
]
other_scam_in_spanish = [
translator.translate(kw).lower() for kw in OTHER_SCAM_KEYWORDS
]
return smishing_in_spanish, other_scam_in_spanish, "es"
else:
return SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en"
def boost_probabilities(probabilities: dict, text: str):
"""
Boost probabilities based on keyword matches and presence of URLs.
"""
lower_text = text.lower()
smishing_keywords, other_scam_keywords, detected_lang = get_keywords_by_language(text)
smishing_count = sum(1 for kw in smishing_keywords if kw in lower_text)
other_scam_count = sum(1 for kw in other_scam_keywords if kw in lower_text)
smishing_boost = 0.30 * smishing_count
other_scam_boost = 0.30 * other_scam_count
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
if found_urls:
smishing_boost += 0.35
p_smishing = probabilities.get("SMiShing", 0.0)
p_other_scam = probabilities.get("Other Scam", 0.0)
p_legit = probabilities.get("Legitimate", 1.0)
p_smishing += smishing_boost
p_other_scam += other_scam_boost
p_legit -= (smishing_boost + other_scam_boost)
p_smishing = max(p_smishing, 0.0)
p_other_scam = max(p_other_scam, 0.0)
p_legit = max(p_legit, 0.0)
total = p_smishing + p_other_scam + p_legit
if total > 0:
p_smishing /= total
p_other_scam /= total
p_legit /= total
else:
p_smishing, p_other_scam, p_legit = 0.0, 0.0, 1.0
return {
"SMiShing": p_smishing,
"Other Scam": p_other_scam,
"Legitimate": p_legit,
"detected_lang": detected_lang,
}
def explain_classification(text):
"""
Generate SHAP explanations for the classification.
"""
shap_values = explainer([text])
shap.force_plot(
explainer.expected_value[0], shap_values[0].values[0], shap_values[0].data
)
def smishing_detector(text, image):
"""
Main detection function combining text and OCR.
"""
combined_text = text or ""
if image is not None:
ocr_text = pytesseract.image_to_string(image, lang="spa+eng")
combined_text += " " + ocr_text
combined_text = combined_text.strip()
if not combined_text:
return {
"text_used_for_classification": "(none)",
"label": "No text provided",
"confidence": 0.0,
"keywords_found": [],
"urls_found": [],
"threat_analysis": "No URLs to analyze",
}
result = classifier(
sequences=combined_text,
candidate_labels=CANDIDATE_LABELS,
hypothesis_template="This message is {}."
)
original_probs = {k: float(v) for k, v in zip(result["labels"], result["scores"])}
boosted = boost_probabilities(original_probs, combined_text)
boosted = {k: float(v) for k, v in boosted.items() if isinstance(v, (int, float))}
detected_lang = boosted.pop("detected_lang", "en")
final_label = max(boosted, key=boosted.get)
final_confidence = round(boosted[final_label], 3)
lower_text = combined_text.lower()
smishing_keys, scam_keys, _ = get_keywords_by_language(combined_text)
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
found_smishing = [kw for kw in smishing_keys if kw in lower_text]
found_other_scam = [kw for kw in scam_keys if kw in lower_text]
# Analyze URLs using Google's Safe Browsing API
threat_analysis = {
url: check_url_with_google_safebrowsing(url) for url in found_urls
}
# SHAP Explanation (optional for user insights)
explain_classification(combined_text)
return {
"detected_language": detected_lang,
"text_used_for_classification": combined_text,
"original_probabilities": {k: round(v, 3) for k, v in original_probs.items()},
"boosted_probabilities": {k: round(v, 3) for k, v in boosted.items()},
"label": final_label,
"confidence": final_confidence,
"smishing_keywords_found": found_smishing,
"other_scam_keywords_found": found_other_scam,
"urls_found": found_urls,
"threat_analysis": threat_analysis,
}
demo = gr.Interface(
fn=smishing_detector,
inputs=[
gr.Textbox(
lines=3,
label="Paste Suspicious SMS Text (English/Spanish)",
placeholder="Type or paste the message here..."
),
gr.Image(
type="pil",
label="Or Upload a Screenshot (Optional)"
)
],
outputs="json",
title="SMiShing & Scam Detector with Safe Browsing",
description="""
This tool classifies messages as SMiShing, Other Scam, or Legitimate using a zero-shot model
(joeddav/xlm-roberta-large-xnli). It automatically detects if the text is Spanish or English.
It uses SHAP for explainability and checks URLs against Google's Safe Browsing API for enhanced analysis.
""",
allow_flagging="never"
)
if __name__ == "__main__":
demo.launch()
|