hackerbyhobby
commited on
updated requirements
Browse files
app.py
CHANGED
@@ -23,9 +23,7 @@ CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
|
23 |
|
24 |
def get_keywords_by_language(text: str):
|
25 |
"""
|
26 |
-
|
27 |
-
2. If Spanish ('es'), translate each English-based keyword to Spanish using `deep-translator`.
|
28 |
-
3. If English (or other languages), use the original English lists.
|
29 |
"""
|
30 |
snippet = text[:200] # Use a snippet for detection
|
31 |
try:
|
@@ -34,7 +32,6 @@ def get_keywords_by_language(text: str):
|
|
34 |
detected_lang = "en" # Default to English if detection fails
|
35 |
|
36 |
if detected_lang == "es":
|
37 |
-
# Translate all SMiShing and Other Scam keywords to Spanish
|
38 |
smishing_in_spanish = [
|
39 |
translator.translate(kw).lower() for kw in SMISHING_KEYWORDS
|
40 |
]
|
@@ -43,7 +40,6 @@ def get_keywords_by_language(text: str):
|
|
43 |
]
|
44 |
return smishing_in_spanish, other_scam_in_spanish, "es"
|
45 |
else:
|
46 |
-
# Default to English keywords
|
47 |
return SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en"
|
48 |
|
49 |
def boost_probabilities(probabilities: dict, text: str):
|
@@ -63,20 +59,17 @@ def boost_probabilities(probabilities: dict, text: str):
|
|
63 |
if found_urls:
|
64 |
smishing_boost += 0.35
|
65 |
|
66 |
-
p_smishing = probabilities
|
67 |
-
p_other_scam = probabilities
|
68 |
-
p_legit = probabilities
|
69 |
|
70 |
p_smishing += smishing_boost
|
71 |
p_other_scam += other_scam_boost
|
72 |
p_legit -= (smishing_boost + other_scam_boost)
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
p_other_scam = 0.0
|
78 |
-
if p_legit < 0:
|
79 |
-
p_legit = 0.0
|
80 |
|
81 |
total = p_smishing + p_other_scam + p_legit
|
82 |
if total > 0:
|
@@ -94,6 +87,9 @@ def boost_probabilities(probabilities: dict, text: str):
|
|
94 |
}
|
95 |
|
96 |
def smishing_detector(text, image):
|
|
|
|
|
|
|
97 |
combined_text = text or ""
|
98 |
if image is not None:
|
99 |
ocr_text = pytesseract.image_to_string(image, lang="spa+eng")
|
@@ -114,11 +110,13 @@ def smishing_detector(text, image):
|
|
114 |
candidate_labels=CANDIDATE_LABELS,
|
115 |
hypothesis_template="This message is {}."
|
116 |
)
|
117 |
-
original_probs =
|
118 |
boosted = boost_probabilities(original_probs, combined_text)
|
|
|
|
|
|
|
119 |
final_label = max(boosted, key=boosted.get)
|
120 |
final_confidence = round(boosted[final_label], 3)
|
121 |
-
detected_lang = boosted.pop("detected_lang", "en")
|
122 |
|
123 |
lower_text = combined_text.lower()
|
124 |
smishing_keys, scam_keys, _ = get_keywords_by_language(combined_text)
|
|
|
23 |
|
24 |
def get_keywords_by_language(text: str):
|
25 |
"""
|
26 |
+
Detect language using `langdetect` and translate keywords if needed.
|
|
|
|
|
27 |
"""
|
28 |
snippet = text[:200] # Use a snippet for detection
|
29 |
try:
|
|
|
32 |
detected_lang = "en" # Default to English if detection fails
|
33 |
|
34 |
if detected_lang == "es":
|
|
|
35 |
smishing_in_spanish = [
|
36 |
translator.translate(kw).lower() for kw in SMISHING_KEYWORDS
|
37 |
]
|
|
|
40 |
]
|
41 |
return smishing_in_spanish, other_scam_in_spanish, "es"
|
42 |
else:
|
|
|
43 |
return SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en"
|
44 |
|
45 |
def boost_probabilities(probabilities: dict, text: str):
|
|
|
59 |
if found_urls:
|
60 |
smishing_boost += 0.35
|
61 |
|
62 |
+
p_smishing = probabilities.get("SMiShing", 0.0)
|
63 |
+
p_other_scam = probabilities.get("Other Scam", 0.0)
|
64 |
+
p_legit = probabilities.get("Legitimate", 1.0)
|
65 |
|
66 |
p_smishing += smishing_boost
|
67 |
p_other_scam += other_scam_boost
|
68 |
p_legit -= (smishing_boost + other_scam_boost)
|
69 |
|
70 |
+
p_smishing = max(p_smishing, 0.0)
|
71 |
+
p_other_scam = max(p_other_scam, 0.0)
|
72 |
+
p_legit = max(p_legit, 0.0)
|
|
|
|
|
|
|
73 |
|
74 |
total = p_smishing + p_other_scam + p_legit
|
75 |
if total > 0:
|
|
|
87 |
}
|
88 |
|
89 |
def smishing_detector(text, image):
|
90 |
+
"""
|
91 |
+
Main detection function combining text and OCR.
|
92 |
+
"""
|
93 |
combined_text = text or ""
|
94 |
if image is not None:
|
95 |
ocr_text = pytesseract.image_to_string(image, lang="spa+eng")
|
|
|
110 |
candidate_labels=CANDIDATE_LABELS,
|
111 |
hypothesis_template="This message is {}."
|
112 |
)
|
113 |
+
original_probs = {k: float(v) for k, v in zip(result["labels"], result["scores"])}
|
114 |
boosted = boost_probabilities(original_probs, combined_text)
|
115 |
+
|
116 |
+
boosted = {k: float(v) for k, v in boosted.items() if isinstance(v, (int, float))}
|
117 |
+
detected_lang = boosted.pop("detected_lang", "en")
|
118 |
final_label = max(boosted, key=boosted.get)
|
119 |
final_confidence = round(boosted[final_label], 3)
|
|
|
120 |
|
121 |
lower_text = combined_text.lower()
|
122 |
smishing_keys, scam_keys, _ = get_keywords_by_language(combined_text)
|