hackerbyhobby
commited on
updated requirements
Browse files
app.py
CHANGED
@@ -3,12 +3,11 @@ import pytesseract
|
|
3 |
from PIL import Image
|
4 |
from transformers import pipeline
|
5 |
import re
|
6 |
-
|
7 |
-
# Language detection & translation
|
8 |
from langdetect import detect
|
9 |
-
from
|
10 |
|
11 |
-
|
|
|
12 |
|
13 |
# 1. Load separate keywords for SMiShing and Other Scam (assumed in English)
|
14 |
with open("smishing_keywords.txt", "r", encoding="utf-8") as f:
|
@@ -24,26 +23,23 @@ CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
|
24 |
|
25 |
def get_keywords_by_language(text: str):
|
26 |
"""
|
27 |
-
1. Detect language
|
28 |
-
2. If Spanish ('es'), translate each English-based keyword to Spanish using
|
29 |
-
3. If English (or
|
30 |
"""
|
31 |
-
|
32 |
-
snippet = text[:200] # up to 200 chars for detection
|
33 |
try:
|
34 |
detected_lang = detect(snippet)
|
35 |
-
except:
|
36 |
-
detected_lang = "en" #
|
37 |
|
38 |
if detected_lang == "es":
|
39 |
# Translate all SMiShing and Other Scam keywords to Spanish
|
40 |
smishing_in_spanish = [
|
41 |
-
translator.translate(kw
|
42 |
-
for kw in SMISHING_KEYWORDS
|
43 |
]
|
44 |
other_scam_in_spanish = [
|
45 |
-
translator.translate(kw
|
46 |
-
for kw in OTHER_SCAM_KEYWORDS
|
47 |
]
|
48 |
return smishing_in_spanish, other_scam_in_spanish, "es"
|
49 |
else:
|
@@ -52,45 +48,29 @@ def get_keywords_by_language(text: str):
|
|
52 |
|
53 |
def boost_probabilities(probabilities: dict, text: str):
|
54 |
"""
|
55 |
-
|
56 |
-
2. Count matches for SMiShing vs. Other Scam.
|
57 |
-
3. If a URL is found, add an extra boost only to SMiShing.
|
58 |
-
4. Subtract total boost from 'Legitimate'.
|
59 |
-
5. Clamp negative probabilities to 0, re-normalize.
|
60 |
"""
|
61 |
lower_text = text.lower()
|
62 |
-
|
63 |
-
# Grab the correct keyword lists based on language
|
64 |
smishing_keywords, other_scam_keywords, detected_lang = get_keywords_by_language(text)
|
65 |
|
66 |
-
# Count SMiShing keyword matches
|
67 |
smishing_count = sum(1 for kw in smishing_keywords if kw in lower_text)
|
68 |
-
# Count Other Scam keyword matches
|
69 |
other_scam_count = sum(1 for kw in other_scam_keywords if kw in lower_text)
|
70 |
|
71 |
-
# Base boost amounts
|
72 |
smishing_boost = 0.30 * smishing_count
|
73 |
other_scam_boost = 0.30 * other_scam_count
|
74 |
|
75 |
-
# Check for URLs => +0.35 only to SMiShing
|
76 |
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
|
77 |
if found_urls:
|
78 |
smishing_boost += 0.35
|
79 |
|
80 |
-
# Extract original probabilities
|
81 |
p_smishing = probabilities["SMiShing"]
|
82 |
p_other_scam = probabilities["Other Scam"]
|
83 |
p_legit = probabilities["Legitimate"]
|
84 |
|
85 |
-
# Apply boosts
|
86 |
p_smishing += smishing_boost
|
87 |
p_other_scam += other_scam_boost
|
|
|
88 |
|
89 |
-
# Subtract total boost from 'Legitimate'
|
90 |
-
total_boost = smishing_boost + other_scam_boost
|
91 |
-
p_legit -= total_boost
|
92 |
-
|
93 |
-
# Clamp negative probabilities
|
94 |
if p_smishing < 0:
|
95 |
p_smishing = 0.0
|
96 |
if p_other_scam < 0:
|
@@ -98,14 +78,12 @@ def boost_probabilities(probabilities: dict, text: str):
|
|
98 |
if p_legit < 0:
|
99 |
p_legit = 0.0
|
100 |
|
101 |
-
# Re-normalize
|
102 |
total = p_smishing + p_other_scam + p_legit
|
103 |
if total > 0:
|
104 |
p_smishing /= total
|
105 |
p_other_scam /= total
|
106 |
p_legit /= total
|
107 |
else:
|
108 |
-
# fallback if everything is 0
|
109 |
p_smishing, p_other_scam, p_legit = 0.0, 0.0, 1.0
|
110 |
|
111 |
return {
|
@@ -116,13 +94,6 @@ def boost_probabilities(probabilities: dict, text: str):
|
|
116 |
}
|
117 |
|
118 |
def smishing_detector(text, image):
|
119 |
-
"""
|
120 |
-
Main function called by Gradio.
|
121 |
-
1. Combine user text + OCR text (if an image is provided).
|
122 |
-
2. Zero-shot classify => base probabilities.
|
123 |
-
3. Apply language detection & translation if needed, then boost logic.
|
124 |
-
4. Return final classification.
|
125 |
-
"""
|
126 |
combined_text = text or ""
|
127 |
if image is not None:
|
128 |
ocr_text = pytesseract.image_to_string(image, lang="spa+eng")
|
@@ -138,51 +109,29 @@ def smishing_detector(text, image):
|
|
138 |
"urls_found": []
|
139 |
}
|
140 |
|
141 |
-
# 1. Zero-shot classification
|
142 |
result = classifier(
|
143 |
sequences=combined_text,
|
144 |
candidate_labels=CANDIDATE_LABELS,
|
145 |
hypothesis_template="This message is {}."
|
146 |
)
|
147 |
original_probs = dict(zip(result["labels"], result["scores"]))
|
148 |
-
|
149 |
-
# 2. Boost logic (including language detection + translation)
|
150 |
boosted = boost_probabilities(original_probs, combined_text)
|
151 |
-
final_label = max(boosted, key=boosted.get) if not isinstance(boosted.get("detected_lang"), float) else "Legitimate"
|
152 |
-
# to avoid conflict, let's store the detected language separately:
|
153 |
-
detected_lang = boosted.pop("detected_lang", "en")
|
154 |
-
|
155 |
-
# We have p_smishing, p_other_scam, p_legit left in boosted
|
156 |
final_label = max(boosted, key=boosted.get)
|
157 |
final_confidence = round(boosted[final_label], 3)
|
|
|
158 |
|
159 |
-
# 3. Identify which keywords & URLs we found
|
160 |
lower_text = combined_text.lower()
|
161 |
-
|
162 |
-
# For demonstration, let's just show the "English or Spanish" keywords. The code to show them in output
|
163 |
-
# can be the same as before, or you can do a second pass with the same logic from boost_probabilities.
|
164 |
-
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
|
165 |
-
|
166 |
-
# We'll do a quick second pass on actual matched keywords so user sees them
|
167 |
-
# - If language is es => we used translated Spanish keywords, let's do the same for display
|
168 |
-
# - If language is en => we used the original English lists
|
169 |
-
if detected_lang == "es":
|
170 |
-
smishing_keys, scam_keys, _ = get_keywords_by_language(combined_text)
|
171 |
-
else:
|
172 |
-
smishing_keys, scam_keys, _ = (SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en")
|
173 |
|
|
|
174 |
found_smishing = [kw for kw in smishing_keys if kw in lower_text]
|
175 |
found_other_scam = [kw for kw in scam_keys if kw in lower_text]
|
176 |
|
177 |
return {
|
178 |
"detected_language": detected_lang,
|
179 |
"text_used_for_classification": combined_text,
|
180 |
-
"original_probabilities": {
|
181 |
-
|
182 |
-
},
|
183 |
-
"boosted_probabilities": {
|
184 |
-
k: round(v, 3) for k, v in boosted.items()
|
185 |
-
},
|
186 |
"label": final_label,
|
187 |
"confidence": final_confidence,
|
188 |
"smishing_keywords_found": found_smishing,
|
|
|
3 |
from PIL import Image
|
4 |
from transformers import pipeline
|
5 |
import re
|
|
|
|
|
6 |
from langdetect import detect
|
7 |
+
from deep_translator import GoogleTranslator
|
8 |
|
9 |
+
# Translator instance
|
10 |
+
translator = GoogleTranslator(source="auto", target="es")
|
11 |
|
12 |
# 1. Load separate keywords for SMiShing and Other Scam (assumed in English)
|
13 |
with open("smishing_keywords.txt", "r", encoding="utf-8") as f:
|
|
|
23 |
|
24 |
def get_keywords_by_language(text: str):
|
25 |
"""
|
26 |
+
1. Detect language using `langdetect`.
|
27 |
+
2. If Spanish ('es'), translate each English-based keyword to Spanish using `deep-translator`.
|
28 |
+
3. If English (or other languages), use the original English lists.
|
29 |
"""
|
30 |
+
snippet = text[:200] # Use a snippet for detection
|
|
|
31 |
try:
|
32 |
detected_lang = detect(snippet)
|
33 |
+
except Exception:
|
34 |
+
detected_lang = "en" # Default to English if detection fails
|
35 |
|
36 |
if detected_lang == "es":
|
37 |
# Translate all SMiShing and Other Scam keywords to Spanish
|
38 |
smishing_in_spanish = [
|
39 |
+
translator.translate(kw).lower() for kw in SMISHING_KEYWORDS
|
|
|
40 |
]
|
41 |
other_scam_in_spanish = [
|
42 |
+
translator.translate(kw).lower() for kw in OTHER_SCAM_KEYWORDS
|
|
|
43 |
]
|
44 |
return smishing_in_spanish, other_scam_in_spanish, "es"
|
45 |
else:
|
|
|
48 |
|
49 |
def boost_probabilities(probabilities: dict, text: str):
|
50 |
"""
|
51 |
+
Boost probabilities based on keyword matches and presence of URLs.
|
|
|
|
|
|
|
|
|
52 |
"""
|
53 |
lower_text = text.lower()
|
|
|
|
|
54 |
smishing_keywords, other_scam_keywords, detected_lang = get_keywords_by_language(text)
|
55 |
|
|
|
56 |
smishing_count = sum(1 for kw in smishing_keywords if kw in lower_text)
|
|
|
57 |
other_scam_count = sum(1 for kw in other_scam_keywords if kw in lower_text)
|
58 |
|
|
|
59 |
smishing_boost = 0.30 * smishing_count
|
60 |
other_scam_boost = 0.30 * other_scam_count
|
61 |
|
|
|
62 |
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
|
63 |
if found_urls:
|
64 |
smishing_boost += 0.35
|
65 |
|
|
|
66 |
p_smishing = probabilities["SMiShing"]
|
67 |
p_other_scam = probabilities["Other Scam"]
|
68 |
p_legit = probabilities["Legitimate"]
|
69 |
|
|
|
70 |
p_smishing += smishing_boost
|
71 |
p_other_scam += other_scam_boost
|
72 |
+
p_legit -= (smishing_boost + other_scam_boost)
|
73 |
|
|
|
|
|
|
|
|
|
|
|
74 |
if p_smishing < 0:
|
75 |
p_smishing = 0.0
|
76 |
if p_other_scam < 0:
|
|
|
78 |
if p_legit < 0:
|
79 |
p_legit = 0.0
|
80 |
|
|
|
81 |
total = p_smishing + p_other_scam + p_legit
|
82 |
if total > 0:
|
83 |
p_smishing /= total
|
84 |
p_other_scam /= total
|
85 |
p_legit /= total
|
86 |
else:
|
|
|
87 |
p_smishing, p_other_scam, p_legit = 0.0, 0.0, 1.0
|
88 |
|
89 |
return {
|
|
|
94 |
}
|
95 |
|
96 |
def smishing_detector(text, image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
combined_text = text or ""
|
98 |
if image is not None:
|
99 |
ocr_text = pytesseract.image_to_string(image, lang="spa+eng")
|
|
|
109 |
"urls_found": []
|
110 |
}
|
111 |
|
|
|
112 |
result = classifier(
|
113 |
sequences=combined_text,
|
114 |
candidate_labels=CANDIDATE_LABELS,
|
115 |
hypothesis_template="This message is {}."
|
116 |
)
|
117 |
original_probs = dict(zip(result["labels"], result["scores"]))
|
|
|
|
|
118 |
boosted = boost_probabilities(original_probs, combined_text)
|
|
|
|
|
|
|
|
|
|
|
119 |
final_label = max(boosted, key=boosted.get)
|
120 |
final_confidence = round(boosted[final_label], 3)
|
121 |
+
detected_lang = boosted.pop("detected_lang", "en")
|
122 |
|
|
|
123 |
lower_text = combined_text.lower()
|
124 |
+
smishing_keys, scam_keys, _ = get_keywords_by_language(combined_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
+
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
|
127 |
found_smishing = [kw for kw in smishing_keys if kw in lower_text]
|
128 |
found_other_scam = [kw for kw in scam_keys if kw in lower_text]
|
129 |
|
130 |
return {
|
131 |
"detected_language": detected_lang,
|
132 |
"text_used_for_classification": combined_text,
|
133 |
+
"original_probabilities": {k: round(v, 3) for k, v in original_probs.items()},
|
134 |
+
"boosted_probabilities": {k: round(v, 3) for k, v in boosted.items()},
|
|
|
|
|
|
|
|
|
135 |
"label": final_label,
|
136 |
"confidence": final_confidence,
|
137 |
"smishing_keywords_found": found_smishing,
|