hackerbyhobby
commited on
more updates
Browse files- app.py +74 -7
- requirements.txt.good1 +10 -0
- scam_keywords.txt +0 -15
app.py
CHANGED
@@ -5,6 +5,9 @@ from transformers import pipeline
|
|
5 |
import re
|
6 |
from langdetect import detect
|
7 |
from deep_translator import GoogleTranslator
|
|
|
|
|
|
|
8 |
|
9 |
# Translator instance
|
10 |
translator = GoogleTranslator(source="auto", target="es")
|
@@ -21,6 +24,52 @@ model_name = "joeddav/xlm-roberta-large-xnli"
|
|
21 |
classifier = pipeline("zero-shot-classification", model=model_name)
|
22 |
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def get_keywords_by_language(text: str):
|
25 |
"""
|
26 |
Detect language using `langdetect` and translate keywords if needed.
|
@@ -83,9 +132,18 @@ def boost_probabilities(probabilities: dict, text: str):
|
|
83 |
"SMiShing": p_smishing,
|
84 |
"Other Scam": p_other_scam,
|
85 |
"Legitimate": p_legit,
|
86 |
-
"detected_lang": detected_lang
|
87 |
}
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
def smishing_detector(text, image):
|
90 |
"""
|
91 |
Main detection function combining text and OCR.
|
@@ -102,7 +160,8 @@ def smishing_detector(text, image):
|
|
102 |
"label": "No text provided",
|
103 |
"confidence": 0.0,
|
104 |
"keywords_found": [],
|
105 |
-
"urls_found": []
|
|
|
106 |
}
|
107 |
|
108 |
result = classifier(
|
@@ -125,6 +184,14 @@ def smishing_detector(text, image):
|
|
125 |
found_smishing = [kw for kw in smishing_keys if kw in lower_text]
|
126 |
found_other_scam = [kw for kw in scam_keys if kw in lower_text]
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
return {
|
129 |
"detected_language": detected_lang,
|
130 |
"text_used_for_classification": combined_text,
|
@@ -135,6 +202,7 @@ def smishing_detector(text, image):
|
|
135 |
"smishing_keywords_found": found_smishing,
|
136 |
"other_scam_keywords_found": found_other_scam,
|
137 |
"urls_found": found_urls,
|
|
|
138 |
}
|
139 |
|
140 |
demo = gr.Interface(
|
@@ -151,15 +219,14 @@ demo = gr.Interface(
|
|
151 |
)
|
152 |
],
|
153 |
outputs="json",
|
154 |
-
title="SMiShing & Scam Detector
|
155 |
description="""
|
156 |
This tool classifies messages as SMiShing, Other Scam, or Legitimate using a zero-shot model
|
157 |
(joeddav/xlm-roberta-large-xnli). It automatically detects if the text is Spanish or English.
|
158 |
-
|
159 |
-
|
160 |
-
""",
|
161 |
allow_flagging="never"
|
162 |
)
|
163 |
|
164 |
if __name__ == "__main__":
|
165 |
-
demo.launch()
|
|
|
5 |
import re
|
6 |
from langdetect import detect
|
7 |
from deep_translator import GoogleTranslator
|
8 |
+
import shap
|
9 |
+
import requests
|
10 |
+
import json
|
11 |
|
12 |
# Translator instance
|
13 |
translator = GoogleTranslator(source="auto", target="es")
|
|
|
24 |
classifier = pipeline("zero-shot-classification", model=model_name)
|
25 |
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
26 |
|
27 |
+
# SHAP explainer setup
|
28 |
+
explainer = shap.Explainer(classifier)
|
29 |
+
|
30 |
+
# Prompt the user for their Google Safe Browsing API key
|
31 |
+
def get_api_key():
|
32 |
+
"""Prompt the user for their API key."""
|
33 |
+
api_key = input("Please enter your Google Safe Browsing API key: ").strip()
|
34 |
+
if not api_key:
|
35 |
+
raise ValueError("API key is required to use the application.")
|
36 |
+
return api_key
|
37 |
+
|
38 |
+
SAFE_BROWSING_API_KEY = get_api_key()
|
39 |
+
SAFE_BROWSING_URL = "https://safebrowsing.googleapis.com/v4/threatMatches:find"
|
40 |
+
|
41 |
+
def check_url_with_google_safebrowsing(url):
|
42 |
+
"""
|
43 |
+
Check a URL against Google's Safe Browsing API.
|
44 |
+
"""
|
45 |
+
payload = {
|
46 |
+
"client": {
|
47 |
+
"clientId": "your-client-id",
|
48 |
+
"clientVersion": "1.0"
|
49 |
+
},
|
50 |
+
"threatInfo": {
|
51 |
+
"threatTypes": ["MALWARE", "SOCIAL_ENGINEERING", "UNWANTED_SOFTWARE", "POTENTIALLY_HARMFUL_APPLICATION"],
|
52 |
+
"platformTypes": ["ANY_PLATFORM"],
|
53 |
+
"threatEntryTypes": ["URL"],
|
54 |
+
"threatEntries": [
|
55 |
+
{"url": url}
|
56 |
+
]
|
57 |
+
}
|
58 |
+
}
|
59 |
+
try:
|
60 |
+
response = requests.post(
|
61 |
+
SAFE_BROWSING_URL,
|
62 |
+
params={"key": SAFE_BROWSING_API_KEY},
|
63 |
+
json=payload
|
64 |
+
)
|
65 |
+
response_data = response.json()
|
66 |
+
if "matches" in response_data:
|
67 |
+
return True # URL is flagged as malicious
|
68 |
+
return False # URL is safe
|
69 |
+
except Exception as e:
|
70 |
+
print(f"Error checking URL with Safe Browsing API: {e}")
|
71 |
+
return False
|
72 |
+
|
73 |
def get_keywords_by_language(text: str):
|
74 |
"""
|
75 |
Detect language using `langdetect` and translate keywords if needed.
|
|
|
132 |
"SMiShing": p_smishing,
|
133 |
"Other Scam": p_other_scam,
|
134 |
"Legitimate": p_legit,
|
135 |
+
"detected_lang": detected_lang,
|
136 |
}
|
137 |
|
138 |
+
def explain_classification(text):
|
139 |
+
"""
|
140 |
+
Generate SHAP explanations for the classification.
|
141 |
+
"""
|
142 |
+
shap_values = explainer([text])
|
143 |
+
shap.force_plot(
|
144 |
+
explainer.expected_value[0], shap_values[0].values[0], shap_values[0].data
|
145 |
+
)
|
146 |
+
|
147 |
def smishing_detector(text, image):
|
148 |
"""
|
149 |
Main detection function combining text and OCR.
|
|
|
160 |
"label": "No text provided",
|
161 |
"confidence": 0.0,
|
162 |
"keywords_found": [],
|
163 |
+
"urls_found": [],
|
164 |
+
"threat_analysis": "No URLs to analyze",
|
165 |
}
|
166 |
|
167 |
result = classifier(
|
|
|
184 |
found_smishing = [kw for kw in smishing_keys if kw in lower_text]
|
185 |
found_other_scam = [kw for kw in scam_keys if kw in lower_text]
|
186 |
|
187 |
+
# Analyze URLs using Google's Safe Browsing API
|
188 |
+
threat_analysis = {
|
189 |
+
url: check_url_with_google_safebrowsing(url) for url in found_urls
|
190 |
+
}
|
191 |
+
|
192 |
+
# SHAP Explanation (optional for user insights)
|
193 |
+
explain_classification(combined_text)
|
194 |
+
|
195 |
return {
|
196 |
"detected_language": detected_lang,
|
197 |
"text_used_for_classification": combined_text,
|
|
|
202 |
"smishing_keywords_found": found_smishing,
|
203 |
"other_scam_keywords_found": found_other_scam,
|
204 |
"urls_found": found_urls,
|
205 |
+
"threat_analysis": threat_analysis,
|
206 |
}
|
207 |
|
208 |
demo = gr.Interface(
|
|
|
219 |
)
|
220 |
],
|
221 |
outputs="json",
|
222 |
+
title="SMiShing & Scam Detector with Safe Browsing",
|
223 |
description="""
|
224 |
This tool classifies messages as SMiShing, Other Scam, or Legitimate using a zero-shot model
|
225 |
(joeddav/xlm-roberta-large-xnli). It automatically detects if the text is Spanish or English.
|
226 |
+
It uses SHAP for explainability and checks URLs against Google's Safe Browsing API for enhanced analysis.
|
227 |
+
""",
|
|
|
228 |
allow_flagging="never"
|
229 |
)
|
230 |
|
231 |
if __name__ == "__main__":
|
232 |
+
demo.launch()
|
requirements.txt.good1
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==3.36.0
|
2 |
+
transformers==4.35.0
|
3 |
+
torch==2.0.1
|
4 |
+
pillow==9.5.0
|
5 |
+
pytesseract==0.3.10
|
6 |
+
langdetect==1.0.9
|
7 |
+
deep-translator==1.10.1
|
8 |
+
httpx==0.13.3
|
9 |
+
sentencepiece==0.1.99
|
10 |
+
numpy==1.25.0
|
scam_keywords.txt
DELETED
@@ -1,15 +0,0 @@
|
|
1 |
-
ceo
|
2 |
-
cash
|
3 |
-
claim
|
4 |
-
gift
|
5 |
-
urgent
|
6 |
-
prize
|
7 |
-
password
|
8 |
-
bank
|
9 |
-
lottery
|
10 |
-
loan
|
11 |
-
winner
|
12 |
-
congratulations
|
13 |
-
credit
|
14 |
-
account
|
15 |
-
verify
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|