File size: 17,519 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f ff61745 f2f9139 10ca6c1 f042db0 f2f9139 ff61745 e80aab9 3db6293 e80aab9 ff61745 29179b5 43efb22 29179b5 31243f4 29179b5 9f47584 f2f9139 e67eadd 227dcb0 29179b5 227dcb0 29179b5 f2f9139 227dcb0 29179b5 f2f9139 227dcb0 f2f9139 227dcb0 f2f9139 227dcb0 f2f9139 227dcb0 f2f9139 227dcb0 f2f9139 227dcb0 f2f9139 227dcb0 bcb1c6b ff61745 bcb1c6b 9f47584 bcb1c6b 41cae26 1c0f5f2 bcb1c6b 1c0f5f2 29179b5 2364c68 bcb1c6b f2f9139 bcb1c6b f2f9139 9f47584 f2f9139 9f47584 bcb1c6b 9f47584 29179b5 9f47584 ff61745 f2f9139 9f47584 227dcb0 29179b5 bcb1c6b 41cae26 bcb1c6b 41cae26 bcb1c6b 41cae26 bcb1c6b f2f9139 41cae26 f289100 31243f4 ff61745 f289100 31243f4 7d65c66 ff61745 3c4371f ff61745 f289100 ff61745 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 f289100 f042db0 f289100 7d65c66 31243f4 eccf8e4 ff61745 7d65c66 31243f4 ff61745 31243f4 e80aab9 31243f4 3c4371f ff61745 7d65c66 31243f4 e80aab9 f289100 ff61745 f289100 ff61745 f289100 bcb1c6b f289100 bcb1c6b 31243f4 f289100 31243f4 b177367 f289100 31243f4 e80aab9 f289100 31243f4 e80aab9 ff61745 e80aab9 31243f4 e80aab9 3c4371f e80aab9 f289100 31243f4 f289100 7d65c66 f289100 31243f4 e80aab9 f289100 0ee0419 e514fd7 f289100 ff61745 f289100 e514fd7 e80aab9 ff61745 e80aab9 ff61745 e80aab9 9088b99 f289100 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f ff61745 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 ff61745 7d65c66 3c4371f ff61745 f042db0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import asyncio
from llama_index.core.agent.workflow import AgentWorkflow
from agents.llama_index_agent import (
GaiaAgent,
create_writer_agent,
create_review_agent
)
import json
import hashlib
from pathlib import Path
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
CLAUDE = {
"model_provider": "anthropic",
"model_name": "claude-3-7-sonnet-latest"
}
OPENAI = {
"model_provider": "openai",
"model_name": "gpt-4o"
}
class BasicAgent:
def __init__(
self,
model_provider="openai",
model_name="o4-mini",
api_key=None,
use_separate_writer_model=True,
writer_model_provider="openai",
writer_model_name="gpt-4o-mini",
use_separate_review_model=True,
review_model_provider="openai",
review_model_name="gpt-4o-mini"
):
"""
Initialize the BasicAgent with a three-agent workflow.
Args:
model_provider: LLM provider for main agent
model_name: Model name for main agent
api_key: API key for main agent
use_separate_writer_model: Whether to use a different model for the writer agent
writer_model_provider: LLM provider for writer agent (if separate)
writer_model_name: Model name for writer agent (if separate)
use_separate_review_model: Whether to use a different model for the review agent
review_model_provider: LLM provider for review agent (if separate)
review_model_name: Model name for review agent (if separate)
"""
# Configure the main reasoning agent
main_model_config = {
"model_provider": model_provider,
"model_name": model_name,
"api_key": api_key
}
# Configure the writer agent (either same as main or different)
if use_separate_writer_model:
writer_model_config = {
"model_provider": writer_model_provider,
"model_name": writer_model_name,
"api_key": api_key # Use same API key for simplicity
}
else:
writer_model_config = main_model_config
# Configure the review agent (either same as main or different)
if use_separate_review_model:
review_model_config = {
"model_provider": review_model_provider,
"model_name": review_model_name,
"api_key": api_key # Use same API key for simplicity
}
else:
review_model_config = main_model_config
# Create the agents
self.main_agent = GaiaAgent(**main_model_config)
self.writer_agent = create_writer_agent(writer_model_config)
self.review_agent = create_review_agent(review_model_config)
# Update the GaiaAgent's can_handoff_to to include review_agent
self.main_agent.can_handoff_to = ["writer_agent", "review_agent"]
# Set up the agent workflow with shared context
self.agent_workflow = AgentWorkflow(
agents=[self.main_agent, self.writer_agent, self.review_agent],
root_agent=self.main_agent.name,
initial_state={
"original_question": "",
"task_id": "",
"audio_file_path": "",
"analysis_notes": "",
"format_requirements": "",
"next_agent": "",
"formatted_answer": "",
"final_answer": ""
}
)
print(f"BasicAgent initialized with main agent: {model_provider} {model_name}")
if use_separate_writer_model:
print(f"Writer agent using: {writer_model_provider} {writer_model_name}")
else:
print(f"Writer agent using same model as main agent")
if use_separate_review_model:
print(f"Review agent using: {review_model_provider} {review_model_name}")
else:
print(f"Review agent using same model as main agent")
def __call__(self, question_data: dict) -> str:
"""Process a GAIA benchmark question and return the formatted answer."""
# Extract question text and task_id
question_text = question_data.get("question", "")
task_id = question_data.get("task_id", "")
file_name = question_data.get("file_name", "")
print(f"Agent received question (first 50 chars): {question_text[:50]}...")
# Download file if present
local_file_path = None
if file_name and task_id:
try:
local_file_path = self.download_task_file(question_data)
print(f"Downloaded file to {local_file_path}")
except Exception as e:
print(f"Error downloading file: {e}")
async def agentic_main():
# Initialize context with the question and file path
initial_state = {
"original_question": question_text,
"task_id": task_id,
"audio_file_path": local_file_path,
"analysis_notes": "",
"format_requirements": "",
"next_agent": "",
"final_answer": "",
"workflow_state": "initial_analysis", # Track workflow state
"require_handoff": True, # Flag that handoff is required
}
# Create a more detailed input with workflow instructions
enhanced_input = f"""
WORKFLOW INSTRUCTIONS:
1. You (jefe) MUST analyze this question and find the answer
2. After analysis, you MUST use the handoff tool to delegate to writer_agent
3. NEVER provide a direct answer - always delegate using the handoff tool
Task ID: {task_id}
Question: {question_text}
"""
# Add file information if available
if local_file_path:
enhanced_input += f"\nFile Path: {local_file_path}\n\nPlease analyze this question. If it involves an audio file, use the transcribe_audio tool with the provided path."
# Monitor the workflow execution
print("Starting workflow execution...")
try:
workflow_response = await self.agent_workflow.run(
enhanced_input,
initial_state=initial_state
)
# Extract the final answer from the last response
if hasattr(workflow_response.response, 'blocks') and workflow_response.response.blocks:
final_answer = workflow_response.response.blocks[-1].text
print(f"Workflow completed. Final answer extracted: {final_answer}")
return final_answer
else:
print("Warning: Could not extract final answer from workflow response blocks")
# Try to extract from the response content
final_answer = str(workflow_response.response)
return final_answer
except Exception as e:
print(f"Error in workflow execution: {e}")
import traceback
traceback.print_exc()
return f"Error: {str(e)}"
response = asyncio.run(agentic_main())
# Extract the final answer and remove any "Answer:" prefix
final_answer = response.response.blocks[-1].text if hasattr(response, 'response') and hasattr(response.response, 'blocks') else str(response)
if isinstance(final_answer, str) and final_answer.startswith("Answer:"):
final_answer = final_answer.replace("Answer:", "").strip()
print(f"Agent returning final answer: {final_answer}")
return final_answer
def download_task_file(self, question_data: dict) -> str:
"""Download a task file from the API and return the local file path."""
api_url = DEFAULT_API_URL
file_url = f"{api_url}/files/{question_data['task_id']}"
print(f"Downloading file from: {file_url}")
try:
response = requests.get(file_url, stream=True)
response.raise_for_status()
# Create a directory for downloaded files if it doesn't exist
downloads_dir = Path("downloads")
downloads_dir.mkdir(exist_ok=True)
# Save the file to the downloads directory
file_path = downloads_dir / f"{question_data['file_name']}"
with open(file_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return str(file_path)
except Exception as e:
print(f"Error downloading file: {e}")
raise
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
# Pass the entire item instead of just the question text
submitted_answer = agent(item)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|