Added cache to the answers
Browse files
README.md
CHANGED
@@ -20,5 +20,8 @@ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-
|
|
20 |
-
|
21 |
## Tag 1.1.0
|
22 |
|
23 |
-
- Adding web and wikipedia tools to single agent obtains 5 / 20 correct answers using claude 3.7
|
24 |
|
|
|
|
|
|
|
|
20 |
-
|
21 |
## Tag 1.1.0
|
22 |
|
23 |
+
- Adding web and wikipedia tools to single agent obtains 5 / 20 correct answers using claude 3.7 and gpt-4o
|
24 |
|
25 |
+
## Tag 1.2.0
|
26 |
+
|
27 |
+
- Adding a `writer_agent` obtains 7 / 20 correct answers using claude 3.7 for research and gpt-4o for write the answers
|
app.py
CHANGED
@@ -6,6 +6,9 @@ import pandas as pd
|
|
6 |
import asyncio
|
7 |
from llama_index.core.agent.workflow import AgentWorkflow
|
8 |
from agents.llama_index_agent import GaiaAgent, create_writer_agent
|
|
|
|
|
|
|
9 |
|
10 |
# (Keep Constants as is)
|
11 |
# --- Constants ---
|
@@ -114,16 +117,104 @@ class BasicAgent:
|
|
114 |
return final_answer
|
115 |
|
116 |
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
"""
|
119 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
120 |
-
and displays the results.
|
|
|
121 |
"""
|
122 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
123 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
124 |
|
125 |
if profile:
|
126 |
-
username= f"{profile.username}"
|
127 |
print(f"User logged in: {username}")
|
128 |
else:
|
129 |
print("User not logged in.")
|
@@ -132,17 +223,17 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
132 |
api_url = DEFAULT_API_URL
|
133 |
questions_url = f"{api_url}/questions"
|
134 |
submit_url = f"{api_url}/submit"
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
# 1. Instantiate Agent (
|
137 |
-
|
138 |
-
agent = BasicAgent()
|
139 |
-
except Exception as e:
|
140 |
-
print(f"Error instantiating agent: {e}")
|
141 |
-
return f"Error initializing agent: {e}", None
|
142 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
143 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
144 |
-
print(agent_code)
|
145 |
|
|
|
|
|
|
|
146 |
# 2. Fetch Questions
|
147 |
print(f"Fetching questions from: {questions_url}")
|
148 |
try:
|
@@ -164,72 +255,144 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
164 |
print(f"An unexpected error occurred fetching questions: {e}")
|
165 |
return f"An unexpected error occurred fetching questions: {e}", None
|
166 |
|
167 |
-
# 3. Run your Agent
|
168 |
results_log = []
|
169 |
answers_payload = []
|
170 |
-
|
|
|
|
|
|
|
171 |
for item in questions_data:
|
172 |
task_id = item.get("task_id")
|
173 |
question_text = item.get("question")
|
|
|
174 |
if not task_id or question_text is None:
|
175 |
print(f"Skipping item with missing task_id or question: {item}")
|
176 |
continue
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
if not answers_payload:
|
186 |
-
print("
|
187 |
-
return "
|
188 |
|
189 |
# 4. Prepare Submission
|
190 |
-
submission_data = {
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
print(status_update)
|
193 |
|
194 |
-
# 5. Submit
|
195 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
196 |
try:
|
197 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
198 |
response.raise_for_status()
|
199 |
result_data = response.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
final_status = (
|
201 |
f"Submission Successful!\n"
|
202 |
f"User: {result_data.get('username')}\n"
|
203 |
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
204 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
|
|
|
|
205 |
f"Message: {result_data.get('message', 'No message received.')}"
|
206 |
)
|
207 |
-
|
|
|
208 |
results_df = pd.DataFrame(results_log)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
return final_status, results_df
|
210 |
-
|
211 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
212 |
-
try:
|
213 |
-
error_json = e.response.json()
|
214 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
215 |
-
except requests.exceptions.JSONDecodeError:
|
216 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
217 |
-
status_message = f"Submission Failed: {error_detail}"
|
218 |
-
print(status_message)
|
219 |
-
results_df = pd.DataFrame(results_log)
|
220 |
-
return status_message, results_df
|
221 |
-
except requests.exceptions.Timeout:
|
222 |
-
status_message = "Submission Failed: The request timed out."
|
223 |
-
print(status_message)
|
224 |
-
results_df = pd.DataFrame(results_log)
|
225 |
-
return status_message, results_df
|
226 |
-
except requests.exceptions.RequestException as e:
|
227 |
-
status_message = f"Submission Failed: Network error - {e}"
|
228 |
-
print(status_message)
|
229 |
-
results_df = pd.DataFrame(results_log)
|
230 |
-
return status_message, results_df
|
231 |
except Exception as e:
|
232 |
-
status_message = f"
|
233 |
print(status_message)
|
234 |
results_df = pd.DataFrame(results_log)
|
235 |
return status_message, results_df
|
@@ -237,19 +400,21 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
237 |
|
238 |
# --- Build Gradio Interface using Blocks ---
|
239 |
with gr.Blocks() as demo:
|
240 |
-
gr.Markdown("# Basic Agent Evaluation Runner")
|
241 |
gr.Markdown(
|
242 |
"""
|
243 |
**Instructions:**
|
244 |
|
245 |
-
1.
|
246 |
-
2.
|
247 |
-
3.
|
248 |
|
|
|
|
|
249 |
---
|
250 |
**Disclaimers:**
|
251 |
-
Once clicking on the "submit button, it can take quite some time (
|
252 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution.
|
253 |
"""
|
254 |
)
|
255 |
|
@@ -258,14 +423,24 @@ with gr.Blocks() as demo:
|
|
258 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
259 |
|
260 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
261 |
-
# Removed max_rows=10 from DataFrame constructor
|
262 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
263 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
run_button.click(
|
265 |
fn=run_and_submit_all,
|
266 |
outputs=[status_output, results_table]
|
267 |
)
|
268 |
|
|
|
|
|
|
|
269 |
if __name__ == "__main__":
|
270 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
271 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
@@ -288,4 +463,5 @@ if __name__ == "__main__":
|
|
288 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
289 |
|
290 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
291 |
-
demo.launch(debug=True, share=False)
|
|
|
|
6 |
import asyncio
|
7 |
from llama_index.core.agent.workflow import AgentWorkflow
|
8 |
from agents.llama_index_agent import GaiaAgent, create_writer_agent
|
9 |
+
import json
|
10 |
+
import hashlib
|
11 |
+
from pathlib import Path
|
12 |
|
13 |
# (Keep Constants as is)
|
14 |
# --- Constants ---
|
|
|
117 |
return final_answer
|
118 |
|
119 |
|
120 |
+
class ResponseCache:
|
121 |
+
"""Cache manager for storing and retrieving agent responses."""
|
122 |
+
|
123 |
+
def __init__(self, cache_file="agent_cache.json"):
|
124 |
+
"""Initialize the cache manager.
|
125 |
+
|
126 |
+
Args:
|
127 |
+
cache_file: Path to the JSON file for storing the cache
|
128 |
+
"""
|
129 |
+
self.cache_file = cache_file
|
130 |
+
self.cache = self._load_cache()
|
131 |
+
|
132 |
+
# Stats for the current session
|
133 |
+
self.cache_hits = 0
|
134 |
+
self.cache_misses = 0
|
135 |
+
|
136 |
+
def _load_cache(self):
|
137 |
+
"""Load the cache from disk."""
|
138 |
+
try:
|
139 |
+
if os.path.exists(self.cache_file):
|
140 |
+
with open(self.cache_file, 'r') as f:
|
141 |
+
return json.load(f)
|
142 |
+
return {}
|
143 |
+
except Exception as e:
|
144 |
+
print(f"Error loading cache: {e}. Starting with empty cache.")
|
145 |
+
return {}
|
146 |
+
|
147 |
+
def _save_cache(self):
|
148 |
+
"""Save the cache to disk."""
|
149 |
+
try:
|
150 |
+
with open(self.cache_file, 'w') as f:
|
151 |
+
json.dump(self.cache, f)
|
152 |
+
except Exception as e:
|
153 |
+
print(f"Error saving cache: {e}")
|
154 |
+
|
155 |
+
def get_hash(self, question):
|
156 |
+
"""Create a consistent hash for a question."""
|
157 |
+
return hashlib.md5(question.encode('utf-8')).hexdigest()
|
158 |
+
|
159 |
+
def get(self, question):
|
160 |
+
"""Get a cached response if available.
|
161 |
+
|
162 |
+
Returns:
|
163 |
+
tuple: (cached_answer, hit_status)
|
164 |
+
- cached_answer: The cached answer or None if not found
|
165 |
+
- hit_status: True if cache hit, False if miss
|
166 |
+
"""
|
167 |
+
question_hash = self.get_hash(question)
|
168 |
+
if question_hash in self.cache:
|
169 |
+
# Only return answers marked as correct
|
170 |
+
entry = self.cache[question_hash]
|
171 |
+
if entry.get("is_correct", False):
|
172 |
+
self.cache_hits += 1
|
173 |
+
return entry["answer"], True
|
174 |
+
|
175 |
+
self.cache_misses += 1
|
176 |
+
return None, False
|
177 |
+
|
178 |
+
def update(self, question, answer, is_correct=False):
|
179 |
+
"""Update the cache with a new response.
|
180 |
+
|
181 |
+
Args:
|
182 |
+
question: The question text
|
183 |
+
answer: The agent's answer
|
184 |
+
is_correct: Whether the answer was correct
|
185 |
+
"""
|
186 |
+
question_hash = self.get_hash(question)
|
187 |
+
self.cache[question_hash] = {
|
188 |
+
"question": question,
|
189 |
+
"answer": answer,
|
190 |
+
"is_correct": is_correct
|
191 |
+
}
|
192 |
+
self._save_cache()
|
193 |
+
|
194 |
+
def get_stats(self):
|
195 |
+
"""Get cache statistics."""
|
196 |
+
total_entries = len(self.cache)
|
197 |
+
correct_entries = sum(1 for entry in self.cache.values() if entry.get("is_correct", False))
|
198 |
+
|
199 |
+
return {
|
200 |
+
"total_cached": total_entries,
|
201 |
+
"correct_cached": correct_entries,
|
202 |
+
"session_hits": self.cache_hits,
|
203 |
+
"session_misses": self.cache_misses
|
204 |
+
}
|
205 |
+
|
206 |
+
|
207 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
208 |
"""
|
209 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
210 |
+
and displays the results. Uses caching to avoid re-processing questions
|
211 |
+
with known correct answers.
|
212 |
"""
|
213 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
214 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
215 |
|
216 |
if profile:
|
217 |
+
username = f"{profile.username}"
|
218 |
print(f"User logged in: {username}")
|
219 |
else:
|
220 |
print("User not logged in.")
|
|
|
223 |
api_url = DEFAULT_API_URL
|
224 |
questions_url = f"{api_url}/questions"
|
225 |
submit_url = f"{api_url}/submit"
|
226 |
+
|
227 |
+
# Initialize the cache
|
228 |
+
cache = ResponseCache()
|
229 |
+
print(f"Cache loaded. Stats: {cache.get_stats()}")
|
230 |
|
231 |
+
# 1. Instantiate Agent (only if needed)
|
232 |
+
agent = None # We'll lazily initialize the agent only if needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase
|
235 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
236 |
+
|
237 |
# 2. Fetch Questions
|
238 |
print(f"Fetching questions from: {questions_url}")
|
239 |
try:
|
|
|
255 |
print(f"An unexpected error occurred fetching questions: {e}")
|
256 |
return f"An unexpected error occurred fetching questions: {e}", None
|
257 |
|
258 |
+
# 3. Run your Agent (with cache)
|
259 |
results_log = []
|
260 |
answers_payload = []
|
261 |
+
cache_usage = {"hits": 0, "misses": 0}
|
262 |
+
|
263 |
+
print(f"Processing {len(questions_data)} questions...")
|
264 |
+
|
265 |
for item in questions_data:
|
266 |
task_id = item.get("task_id")
|
267 |
question_text = item.get("question")
|
268 |
+
|
269 |
if not task_id or question_text is None:
|
270 |
print(f"Skipping item with missing task_id or question: {item}")
|
271 |
continue
|
272 |
+
|
273 |
+
# Try to get the answer from cache
|
274 |
+
cached_answer, is_cache_hit = cache.get(question_text)
|
275 |
+
|
276 |
+
if is_cache_hit:
|
277 |
+
# Use cached answer
|
278 |
+
submitted_answer = cached_answer
|
279 |
+
cache_usage["hits"] += 1
|
280 |
+
print(f"✅ Cache hit for task {task_id}. Using cached answer.")
|
281 |
+
else:
|
282 |
+
# Cache miss - run the agent
|
283 |
+
cache_usage["misses"] += 1
|
284 |
+
print(f"🔄 Cache miss for task {task_id}. Running agent...")
|
285 |
+
|
286 |
+
# Lazy initialization of agent
|
287 |
+
if agent is None:
|
288 |
+
try:
|
289 |
+
print("Initializing agent...")
|
290 |
+
agent = BasicAgent()
|
291 |
+
except Exception as e:
|
292 |
+
print(f"Error instantiating agent: {e}")
|
293 |
+
return f"Error initializing agent: {e}", None
|
294 |
+
|
295 |
+
try:
|
296 |
+
submitted_answer = agent(question_text)
|
297 |
+
except Exception as e:
|
298 |
+
print(f"Error running agent on task {task_id}: {e}")
|
299 |
+
submitted_answer = f"AGENT ERROR: {e}"
|
300 |
+
|
301 |
+
# Add to results and submission payload
|
302 |
+
answers_payload.append({
|
303 |
+
"task_id": task_id,
|
304 |
+
"submitted_answer": submitted_answer
|
305 |
+
})
|
306 |
+
|
307 |
+
results_log.append({
|
308 |
+
"Task ID": task_id,
|
309 |
+
"Question": question_text,
|
310 |
+
"Submitted Answer": submitted_answer,
|
311 |
+
"From Cache": is_cache_hit
|
312 |
+
})
|
313 |
|
314 |
if not answers_payload:
|
315 |
+
print("No answers to submit.")
|
316 |
+
return "No answers to submit.", pd.DataFrame(results_log)
|
317 |
|
318 |
# 4. Prepare Submission
|
319 |
+
submission_data = {
|
320 |
+
"username": username.strip(),
|
321 |
+
"agent_code": agent_code,
|
322 |
+
"answers": answers_payload
|
323 |
+
}
|
324 |
+
|
325 |
+
status_update = (
|
326 |
+
f"Finished processing questions. "
|
327 |
+
f"Cache: {cache_usage['hits']} hits, {cache_usage['misses']} misses. "
|
328 |
+
f"Submitting {len(answers_payload)} answers for user '{username}'..."
|
329 |
+
)
|
330 |
print(status_update)
|
331 |
|
332 |
+
# 5. Submit and update cache with results
|
333 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
334 |
try:
|
335 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
336 |
response.raise_for_status()
|
337 |
result_data = response.json()
|
338 |
+
|
339 |
+
# Update cache with correct answers
|
340 |
+
if "task_results" in result_data:
|
341 |
+
cache_updates = 0
|
342 |
+
for task_result in result_data["task_results"]:
|
343 |
+
task_id = task_result.get("task_id")
|
344 |
+
is_correct = task_result.get("is_correct", False)
|
345 |
+
|
346 |
+
# Find the matching question and answer
|
347 |
+
for item in questions_data:
|
348 |
+
if item.get("task_id") == task_id:
|
349 |
+
question = item.get("question")
|
350 |
+
|
351 |
+
# Find the matching submitted answer
|
352 |
+
for answer_item in answers_payload:
|
353 |
+
if answer_item.get("task_id") == task_id:
|
354 |
+
answer = answer_item.get("submitted_answer")
|
355 |
+
|
356 |
+
# Only cache correct answers
|
357 |
+
if is_correct:
|
358 |
+
cache.update(question, answer, is_correct=True)
|
359 |
+
cache_updates += 1
|
360 |
+
break
|
361 |
+
|
362 |
+
print(f"Updated cache with {cache_updates} correct answers.")
|
363 |
+
|
364 |
+
# Prepare final status message
|
365 |
+
cache_stats = cache.get_stats()
|
366 |
final_status = (
|
367 |
f"Submission Successful!\n"
|
368 |
f"User: {result_data.get('username')}\n"
|
369 |
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
370 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
371 |
+
f"Cache Performance: {cache_usage['hits']} hits, {cache_usage['misses']} misses\n"
|
372 |
+
f"Total Cached Correct Answers: {cache_stats['correct_cached']}\n"
|
373 |
f"Message: {result_data.get('message', 'No message received.')}"
|
374 |
)
|
375 |
+
|
376 |
+
# Add cache information to results dataframe
|
377 |
results_df = pd.DataFrame(results_log)
|
378 |
+
|
379 |
+
# If the response includes detailed results, add correctness to the DataFrame
|
380 |
+
if "task_results" in result_data:
|
381 |
+
# Create a mapping of task_id to correctness
|
382 |
+
correctness_map = {
|
383 |
+
result["task_id"]: result["is_correct"]
|
384 |
+
for result in result_data["task_results"]
|
385 |
+
}
|
386 |
+
|
387 |
+
# Add a column for correctness
|
388 |
+
results_df["Is Correct"] = results_df["Task ID"].map(
|
389 |
+
lambda x: correctness_map.get(x, "Unknown")
|
390 |
+
)
|
391 |
+
|
392 |
return final_status, results_df
|
393 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
394 |
except Exception as e:
|
395 |
+
status_message = f"Submission Failed: {str(e)}"
|
396 |
print(status_message)
|
397 |
results_df = pd.DataFrame(results_log)
|
398 |
return status_message, results_df
|
|
|
400 |
|
401 |
# --- Build Gradio Interface using Blocks ---
|
402 |
with gr.Blocks() as demo:
|
403 |
+
gr.Markdown("# Basic Agent Evaluation Runner (with Caching)")
|
404 |
gr.Markdown(
|
405 |
"""
|
406 |
**Instructions:**
|
407 |
|
408 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc...
|
409 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
410 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
411 |
|
412 |
+
**Caching Enabled**: Correct answers are cached between runs to speed up evaluation.
|
413 |
+
|
414 |
---
|
415 |
**Disclaimers:**
|
416 |
+
Once clicking on the "submit button, it can take quite some time (this is the time for the agent to go through all the questions).
|
417 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution.
|
418 |
"""
|
419 |
)
|
420 |
|
|
|
423 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
424 |
|
425 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
426 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
427 |
|
428 |
+
# Display current cache status
|
429 |
+
cache = ResponseCache()
|
430 |
+
cache_stats = cache.get_stats()
|
431 |
+
|
432 |
+
gr.Markdown(
|
433 |
+
f"**Cache Status**: {cache_stats['correct_cached']} correct answers cached out of {cache_stats['total_cached']} total entries."
|
434 |
+
)
|
435 |
+
|
436 |
run_button.click(
|
437 |
fn=run_and_submit_all,
|
438 |
outputs=[status_output, results_table]
|
439 |
)
|
440 |
|
441 |
+
|
442 |
+
|
443 |
+
# Add these imports to your existing imports
|
444 |
if __name__ == "__main__":
|
445 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
446 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
|
|
463 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
464 |
|
465 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
466 |
+
demo.launch(debug=True, share=False)
|
467 |
+
|