Back to basic interface and checking with openai
Browse files
app.py
CHANGED
@@ -3,21 +3,15 @@ import gradio as gr
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
-
import json
|
7 |
-
import asyncio
|
8 |
-
from pathlib import Path
|
9 |
-
from datetime import datetime
|
10 |
-
from typing import List, Dict, Any, Optional
|
11 |
-
from tqdm.asyncio import tqdm as async_tqdm
|
12 |
from agents.llama_index_agent import GaiaAgent
|
13 |
-
|
|
|
14 |
# --- Constants ---
|
15 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
16 |
-
CACHE_DIR = "cache"
|
17 |
-
CACHE_FILE = os.path.join(CACHE_DIR, "agent_cache.json")
|
18 |
-
MAX_CONCURRENT_REQUESTS = 3 # Limit concurrent API calls
|
19 |
|
20 |
-
#
|
|
|
|
|
21 |
CLAUDE = {
|
22 |
"model_provider": "anthropic",
|
23 |
"model_name": "claude-3-7-sonnet-latest"
|
@@ -26,362 +20,120 @@ OPENAI = {
|
|
26 |
"model_provider": "openai",
|
27 |
"model_name": "gpt-4o"
|
28 |
}
|
29 |
-
|
30 |
-
# --- Optimized Agent Implementation ---
|
31 |
-
class OptimizedGaiaAgent:
|
32 |
-
"""
|
33 |
-
Enhanced GAIA agent with caching and asynchronous processing capabilities.
|
34 |
-
"""
|
35 |
-
def __init__(
|
36 |
-
self,
|
37 |
-
model_config=CLAUDE,
|
38 |
-
use_cache=True,
|
39 |
-
cache_file=CACHE_FILE,
|
40 |
-
max_concurrent=MAX_CONCURRENT_REQUESTS
|
41 |
-
):
|
42 |
-
"""
|
43 |
-
Initialize the optimized agent.
|
44 |
-
|
45 |
-
Args:
|
46 |
-
model_config: Dictionary with model_provider and model_name
|
47 |
-
use_cache: Whether to use caching
|
48 |
-
cache_file: Path to the cache file
|
49 |
-
max_concurrent: Maximum number of concurrent requests
|
50 |
-
"""
|
51 |
-
self.agent = GaiaAgent(**model_config)
|
52 |
-
self.model_config = model_config
|
53 |
-
self.use_cache = use_cache
|
54 |
-
self.cache_file = cache_file
|
55 |
-
self.cache = self._load_cache() if use_cache else {}
|
56 |
-
self.semaphore = asyncio.Semaphore(max_concurrent)
|
57 |
-
|
58 |
-
print(f"OptimizedGaiaAgent initialized with {model_config['model_provider']} {model_config['model_name']}")
|
59 |
-
if use_cache:
|
60 |
-
print(f"Cache loaded with {len(self.cache)} answers")
|
61 |
-
|
62 |
-
def _load_cache(self) -> Dict[str, str]:
|
63 |
-
"""Load cached answers from file"""
|
64 |
-
# Create cache directory if it doesn't exist
|
65 |
-
os.makedirs(os.path.dirname(self.cache_file), exist_ok=True)
|
66 |
-
|
67 |
-
cache_path = Path(self.cache_file)
|
68 |
-
if cache_path.exists():
|
69 |
-
try:
|
70 |
-
with open(cache_path, 'r') as f:
|
71 |
-
return json.load(f)
|
72 |
-
except Exception as e:
|
73 |
-
print(f"Error loading cache: {e}")
|
74 |
-
return {}
|
75 |
-
return {}
|
76 |
-
|
77 |
-
def _save_cache(self) -> None:
|
78 |
-
"""Save cached answers to file"""
|
79 |
-
try:
|
80 |
-
with open(self.cache_file, 'w') as f:
|
81 |
-
json.dump(self.cache, f, indent=2)
|
82 |
-
except Exception as e:
|
83 |
-
print(f"Error saving cache: {e}")
|
84 |
-
|
85 |
-
def _get_cache_key(self, question: str) -> str:
|
86 |
-
"""Generate a consistent key for the cache"""
|
87 |
-
# Strip whitespace and normalize
|
88 |
-
return question.strip()
|
89 |
-
|
90 |
-
async def process_question(self, task_id: str, question: str) -> Dict[str, Any]:
|
91 |
-
"""
|
92 |
-
Process a single question, using cache if available.
|
93 |
-
|
94 |
-
Args:
|
95 |
-
task_id: ID of the task/question
|
96 |
-
question: The question text
|
97 |
-
|
98 |
-
Returns:
|
99 |
-
Dictionary with task_id, question, answer, and metadata
|
100 |
-
"""
|
101 |
-
cache_key = self._get_cache_key(question)
|
102 |
-
|
103 |
-
# Check cache first
|
104 |
-
if self.use_cache and cache_key in self.cache:
|
105 |
-
print(f"🔄 Cache hit for task {task_id[:8]}...")
|
106 |
-
return {
|
107 |
-
"task_id": task_id,
|
108 |
-
"question": question,
|
109 |
-
"submitted_answer": self.cache[cache_key],
|
110 |
-
"cached": True,
|
111 |
-
"error": False
|
112 |
-
}
|
113 |
-
|
114 |
-
# Process the question (with semaphore to limit concurrent requests)
|
115 |
-
async with self.semaphore:
|
116 |
-
print(f"⚙️ Processing task {task_id[:8]}...")
|
117 |
-
try:
|
118 |
-
response = await self.agent.run(question)
|
119 |
-
answer = response.response.blocks[-1].text
|
120 |
-
|
121 |
-
# Save to cache
|
122 |
-
if self.use_cache:
|
123 |
-
self.cache[cache_key] = answer
|
124 |
-
# Use asyncio.to_thread for file I/O to avoid blocking
|
125 |
-
await asyncio.to_thread(self._save_cache)
|
126 |
-
|
127 |
-
return {
|
128 |
-
"task_id": task_id,
|
129 |
-
"question": question,
|
130 |
-
"submitted_answer": answer,
|
131 |
-
"cached": False,
|
132 |
-
"error": False
|
133 |
-
}
|
134 |
-
except Exception as e:
|
135 |
-
error_message = f"ERROR: {str(e)}"
|
136 |
-
print(f"❌ Error processing task {task_id[:8]}: {error_message}")
|
137 |
-
return {
|
138 |
-
"task_id": task_id,
|
139 |
-
"question": question,
|
140 |
-
"submitted_answer": error_message,
|
141 |
-
"cached": False,
|
142 |
-
"error": True
|
143 |
-
}
|
144 |
-
|
145 |
-
async def process_all(
|
146 |
-
self,
|
147 |
-
questions_data: List[Dict[str, Any]],
|
148 |
-
progress_callback=None
|
149 |
-
) -> List[Dict[str, Any]]:
|
150 |
-
"""
|
151 |
-
Process all questions, with progress reporting.
|
152 |
-
|
153 |
-
Args:
|
154 |
-
questions_data: List of question dictionaries
|
155 |
-
progress_callback: Function to call with progress updates
|
156 |
-
|
157 |
-
Returns:
|
158 |
-
List of results with answers and metadata
|
159 |
-
"""
|
160 |
-
# Filter out invalid questions
|
161 |
-
valid_questions = [
|
162 |
-
item for item in questions_data
|
163 |
-
if item.get("task_id") and item.get("question") is not None
|
164 |
-
]
|
165 |
-
|
166 |
-
if not valid_questions:
|
167 |
-
print("No valid questions to process.")
|
168 |
-
return []
|
169 |
-
|
170 |
-
total = len(valid_questions)
|
171 |
-
print(f"Processing {total} questions with {MAX_CONCURRENT_REQUESTS} concurrent tasks...")
|
172 |
-
|
173 |
-
# Process questions and collect results
|
174 |
-
results = []
|
175 |
-
|
176 |
-
# Create async tasks
|
177 |
-
tasks = [
|
178 |
-
self.process_question(item["task_id"], item["question"])
|
179 |
-
for item in valid_questions
|
180 |
-
]
|
181 |
-
|
182 |
-
# Process with progress tracking
|
183 |
-
if progress_callback:
|
184 |
-
progress_callback(0, desc="Starting processing...")
|
185 |
-
|
186 |
-
# Process tasks one by one with progress updates
|
187 |
-
for i, task in enumerate(asyncio.as_completed(tasks)):
|
188 |
-
result = await task
|
189 |
-
results.append(result)
|
190 |
-
|
191 |
-
# Update progress
|
192 |
-
if progress_callback:
|
193 |
-
progress_callback((i + 1) / total, desc=f"Processed {i + 1}/{total} questions")
|
194 |
-
|
195 |
-
# Sort results to match original order
|
196 |
-
id_to_result = {result["task_id"]: result for result in results}
|
197 |
-
ordered_results = [
|
198 |
-
id_to_result.get(
|
199 |
-
item["task_id"],
|
200 |
-
{"task_id": item["task_id"], "question": item.get("question"), "submitted_answer": "ERROR: Processing failed", "error": True}
|
201 |
-
)
|
202 |
-
for item in valid_questions
|
203 |
-
]
|
204 |
-
|
205 |
-
return ordered_results
|
206 |
-
|
207 |
-
|
208 |
-
# --- Main Application Class ---
|
209 |
class BasicAgent:
|
210 |
-
"""
|
211 |
-
Optimized agent wrapper for the GAIA benchmark.
|
212 |
-
"""
|
213 |
def __init__(
|
214 |
self,
|
215 |
-
model_provider="
|
216 |
-
model_name="
|
217 |
-
api_key=None
|
218 |
-
use_cache=True,
|
219 |
-
max_concurrent=MAX_CONCURRENT_REQUESTS
|
220 |
):
|
221 |
"""
|
222 |
-
Initialize the BasicAgent with
|
223 |
|
224 |
Args:
|
225 |
-
model_provider: LLM provider to use
|
226 |
model_name: Specific model to use
|
227 |
-
api_key: Optional API key
|
228 |
-
use_cache: Whether to use caching
|
229 |
-
max_concurrent: Maximum concurrent requests
|
230 |
"""
|
231 |
-
|
232 |
-
"model_provider": model_provider,
|
233 |
-
"model_name": model_name,
|
234 |
-
"api_key": api_key
|
235 |
-
}
|
236 |
-
|
237 |
-
self.agent = OptimizedGaiaAgent(
|
238 |
-
model_config=model_config,
|
239 |
-
use_cache=use_cache,
|
240 |
-
max_concurrent=max_concurrent
|
241 |
-
)
|
242 |
print(f"BasicAgent initialized with {model_provider} {model_name}.")
|
243 |
|
244 |
-
async def process_async(self, questions_data, progress_callback=None):
|
245 |
-
"""Process questions asynchronously with progress reporting"""
|
246 |
-
return await self.agent.process_all(questions_data, progress_callback)
|
247 |
-
|
248 |
def __call__(self, question: str) -> str:
|
249 |
-
"""
|
250 |
-
Process a single question (for compatibility with the original interface).
|
251 |
-
This method is synchronous for backward compatibility.
|
252 |
-
"""
|
253 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
254 |
|
255 |
async def agentic_main():
|
256 |
-
|
257 |
-
return
|
258 |
|
259 |
-
|
|
|
260 |
print(f"Agent returning answer: {final_answer}")
|
261 |
return final_answer
|
262 |
|
263 |
-
|
264 |
-
# --- Async Run and Submit Function ---
|
265 |
-
async def async_run_and_submit_all(
|
266 |
-
profile: gr.OAuthProfile | None,
|
267 |
-
progress=gr.Progress()
|
268 |
-
) -> tuple:
|
269 |
"""
|
270 |
-
|
271 |
-
|
272 |
"""
|
273 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
274 |
-
space_id = os.getenv("SPACE_ID")
|
275 |
|
276 |
-
if
|
|
|
|
|
|
|
277 |
print("User not logged in.")
|
278 |
return "Please Login to Hugging Face with the button.", None
|
279 |
|
280 |
-
username = f"{profile.username}"
|
281 |
-
print(f"User logged in: {username}")
|
282 |
-
|
283 |
api_url = DEFAULT_API_URL
|
284 |
questions_url = f"{api_url}/questions"
|
285 |
submit_url = f"{api_url}/submit"
|
286 |
|
287 |
-
# 1. Instantiate Agent
|
288 |
try:
|
289 |
-
progress(0, desc="Initializing agent...")
|
290 |
agent = BasicAgent()
|
291 |
except Exception as e:
|
292 |
print(f"Error instantiating agent: {e}")
|
293 |
return f"Error initializing agent: {e}", None
|
294 |
-
|
295 |
-
# In the case of an app running as a Hugging Face space, this link points toward your codebase
|
296 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
297 |
print(agent_code)
|
298 |
|
299 |
# 2. Fetch Questions
|
300 |
print(f"Fetching questions from: {questions_url}")
|
301 |
-
progress(0.1, desc="Fetching questions...")
|
302 |
try:
|
303 |
-
|
304 |
-
async def fetch_questions():
|
305 |
-
loop = asyncio.get_event_loop()
|
306 |
-
return await loop.run_in_executor(
|
307 |
-
None,
|
308 |
-
lambda: requests.get(questions_url, timeout=15)
|
309 |
-
)
|
310 |
-
|
311 |
-
response = await fetch_questions()
|
312 |
response.raise_for_status()
|
313 |
questions_data = response.json()
|
314 |
-
|
315 |
if not questions_data:
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
print(f"Fetched {len(questions_data)} questions.")
|
320 |
-
progress(0.2, desc=f"Successfully fetched {len(questions_data)} questions.")
|
321 |
-
|
322 |
except requests.exceptions.RequestException as e:
|
323 |
print(f"Error fetching questions: {e}")
|
324 |
return f"Error fetching questions: {e}", None
|
325 |
except requests.exceptions.JSONDecodeError as e:
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
except Exception as e:
|
330 |
print(f"An unexpected error occurred fetching questions: {e}")
|
331 |
return f"An unexpected error occurred fetching questions: {e}", None
|
332 |
|
333 |
-
# 3.
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
{"task_id":
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
results_log = [
|
351 |
-
{"Task ID": result["task_id"], "Question": result["question"], "Submitted Answer": result["submitted_answer"]}
|
352 |
-
for result in results
|
353 |
-
]
|
354 |
-
|
355 |
-
progress(0.8, desc=f"Processed all {len(results)} questions. Preparing submission...")
|
356 |
-
|
357 |
-
except Exception as e:
|
358 |
-
print(f"Error during question processing: {e}")
|
359 |
-
return f"Error during question processing: {e}", None
|
360 |
|
361 |
if not answers_payload:
|
362 |
print("Agent did not produce any answers to submit.")
|
363 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(
|
364 |
|
365 |
# 4. Prepare Submission
|
366 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
367 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
368 |
print(status_update)
|
369 |
-
progress(0.9, desc="Submitting answers...")
|
370 |
|
371 |
# 5. Submit
|
372 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
373 |
try:
|
374 |
-
|
375 |
-
loop = asyncio.get_event_loop()
|
376 |
-
return await loop.run_in_executor(
|
377 |
-
None,
|
378 |
-
lambda: requests.post(submit_url, json=submission_data, timeout=60)
|
379 |
-
)
|
380 |
-
|
381 |
-
response = await submit_answers()
|
382 |
response.raise_for_status()
|
383 |
result_data = response.json()
|
384 |
-
|
385 |
final_status = (
|
386 |
f"Submission Successful!\n"
|
387 |
f"User: {result_data.get('username')}\n"
|
@@ -389,12 +141,9 @@ async def async_run_and_submit_all(
|
|
389 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
390 |
f"Message: {result_data.get('message', 'No message received.')}"
|
391 |
)
|
392 |
-
|
393 |
print("Submission successful.")
|
394 |
-
progress(1.0, desc="Complete!")
|
395 |
results_df = pd.DataFrame(results_log)
|
396 |
return final_status, results_df
|
397 |
-
|
398 |
except requests.exceptions.HTTPError as e:
|
399 |
error_detail = f"Server responded with status {e.response.status_code}."
|
400 |
try:
|
@@ -423,67 +172,42 @@ async def async_run_and_submit_all(
|
|
423 |
return status_message, results_df
|
424 |
|
425 |
|
426 |
-
# Synchronous wrapper for the async function (for Gradio compatibility)
|
427 |
-
def run_and_submit_all(profile: gr.OAuthProfile | None, progress=gr.Progress()):
|
428 |
-
"""Synchronous wrapper for the async function"""
|
429 |
-
return asyncio.run(async_run_and_submit_all(profile, progress))
|
430 |
-
|
431 |
-
|
432 |
# --- Build Gradio Interface using Blocks ---
|
433 |
with gr.Blocks() as demo:
|
434 |
-
gr.Markdown("#
|
435 |
gr.Markdown(
|
436 |
"""
|
437 |
**Instructions:**
|
438 |
|
439 |
-
1.
|
440 |
-
2.
|
441 |
-
3.
|
442 |
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
"""
|
448 |
)
|
449 |
|
450 |
-
|
451 |
-
gr.LoginButton()
|
452 |
-
clear_cache_button = gr.Button("Clear Cache")
|
453 |
|
454 |
-
run_button = gr.Button("Run Evaluation & Submit All Answers"
|
455 |
|
456 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
457 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
458 |
|
459 |
-
# Define clear cache function
|
460 |
-
def clear_cache():
|
461 |
-
if os.path.exists(CACHE_FILE):
|
462 |
-
try:
|
463 |
-
os.remove(CACHE_FILE)
|
464 |
-
return f"Cache cleared successfully! ({CACHE_FILE})"
|
465 |
-
except Exception as e:
|
466 |
-
return f"Error clearing cache: {e}"
|
467 |
-
return "No cache file found."
|
468 |
-
|
469 |
-
# Connect the components
|
470 |
-
clear_cache_button.click(
|
471 |
-
fn=clear_cache,
|
472 |
-
outputs=status_output
|
473 |
-
)
|
474 |
-
|
475 |
run_button.click(
|
476 |
fn=run_and_submit_all,
|
477 |
-
inputs=[gr.OAuthProfile()],
|
478 |
outputs=[status_output, results_table]
|
479 |
)
|
480 |
|
481 |
-
# --- App Entry Point ---
|
482 |
if __name__ == "__main__":
|
483 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
484 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
485 |
space_host_startup = os.getenv("SPACE_HOST")
|
486 |
-
space_id_startup = os.getenv("SPACE_ID")
|
487 |
|
488 |
if space_host_startup:
|
489 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
@@ -491,7 +215,7 @@ if __name__ == "__main__":
|
|
491 |
else:
|
492 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
493 |
|
494 |
-
if space_id_startup:
|
495 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
496 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
497 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
@@ -500,5 +224,5 @@ if __name__ == "__main__":
|
|
500 |
|
501 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
502 |
|
503 |
-
print("Launching Gradio Interface for
|
504 |
demo.launch(debug=True, share=False)
|
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from agents.llama_index_agent import GaiaAgent
|
7 |
+
import asyncio
|
8 |
+
# (Keep Constants as is)
|
9 |
# --- Constants ---
|
10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
|
|
|
11 |
|
12 |
+
# --- Basic Agent Definition ---
|
13 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
14 |
+
|
15 |
CLAUDE = {
|
16 |
"model_provider": "anthropic",
|
17 |
"model_name": "claude-3-7-sonnet-latest"
|
|
|
20 |
"model_provider": "openai",
|
21 |
"model_name": "gpt-4o"
|
22 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
class BasicAgent:
|
|
|
|
|
|
|
24 |
def __init__(
|
25 |
self,
|
26 |
+
model_provider="openai",
|
27 |
+
model_name="gpt-4o",
|
28 |
+
api_key=None
|
|
|
|
|
29 |
):
|
30 |
"""
|
31 |
+
Initialize the BasicAgent with configurable model settings.
|
32 |
|
33 |
Args:
|
34 |
+
model_provider: LLM provider to use (openai, anthropic, etc.)
|
35 |
model_name: Specific model to use
|
36 |
+
api_key: Optional API key (defaults to environment variable)
|
|
|
|
|
37 |
"""
|
38 |
+
self.agent = GaiaAgent(**OPENAI)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
print(f"BasicAgent initialized with {model_provider} {model_name}.")
|
40 |
|
|
|
|
|
|
|
|
|
41 |
def __call__(self, question: str) -> str:
|
42 |
+
"""Process a GAIA benchmark question and return the formatted answer."""
|
|
|
|
|
|
|
43 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
44 |
|
45 |
async def agentic_main():
|
46 |
+
response = await self.agent.run(question)
|
47 |
+
return response
|
48 |
|
49 |
+
response = asyncio.run(agentic_main())
|
50 |
+
final_answer = response.response.blocks[-1].text
|
51 |
print(f"Agent returning answer: {final_answer}")
|
52 |
return final_answer
|
53 |
|
54 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
|
|
|
|
|
|
|
|
|
55 |
"""
|
56 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
57 |
+
and displays the results.
|
58 |
"""
|
59 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
60 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
61 |
|
62 |
+
if profile:
|
63 |
+
username= f"{profile.username}"
|
64 |
+
print(f"User logged in: {username}")
|
65 |
+
else:
|
66 |
print("User not logged in.")
|
67 |
return "Please Login to Hugging Face with the button.", None
|
68 |
|
|
|
|
|
|
|
69 |
api_url = DEFAULT_API_URL
|
70 |
questions_url = f"{api_url}/questions"
|
71 |
submit_url = f"{api_url}/submit"
|
72 |
|
73 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
74 |
try:
|
|
|
75 |
agent = BasicAgent()
|
76 |
except Exception as e:
|
77 |
print(f"Error instantiating agent: {e}")
|
78 |
return f"Error initializing agent: {e}", None
|
79 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
|
|
80 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
81 |
print(agent_code)
|
82 |
|
83 |
# 2. Fetch Questions
|
84 |
print(f"Fetching questions from: {questions_url}")
|
|
|
85 |
try:
|
86 |
+
response = requests.get(questions_url, timeout=15)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
response.raise_for_status()
|
88 |
questions_data = response.json()
|
|
|
89 |
if not questions_data:
|
90 |
+
print("Fetched questions list is empty.")
|
91 |
+
return "Fetched questions list is empty or invalid format.", None
|
|
|
92 |
print(f"Fetched {len(questions_data)} questions.")
|
|
|
|
|
93 |
except requests.exceptions.RequestException as e:
|
94 |
print(f"Error fetching questions: {e}")
|
95 |
return f"Error fetching questions: {e}", None
|
96 |
except requests.exceptions.JSONDecodeError as e:
|
97 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
98 |
+
print(f"Response text: {response.text[:500]}")
|
99 |
+
return f"Error decoding server response for questions: {e}", None
|
100 |
except Exception as e:
|
101 |
print(f"An unexpected error occurred fetching questions: {e}")
|
102 |
return f"An unexpected error occurred fetching questions: {e}", None
|
103 |
|
104 |
+
# 3. Run your Agent
|
105 |
+
results_log = []
|
106 |
+
answers_payload = []
|
107 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
108 |
+
for item in questions_data:
|
109 |
+
task_id = item.get("task_id")
|
110 |
+
question_text = item.get("question")
|
111 |
+
if not task_id or question_text is None:
|
112 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
113 |
+
continue
|
114 |
+
try:
|
115 |
+
submitted_answer = agent(question_text)
|
116 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
117 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
118 |
+
except Exception as e:
|
119 |
+
print(f"Error running agent on task {task_id}: {e}")
|
120 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
if not answers_payload:
|
123 |
print("Agent did not produce any answers to submit.")
|
124 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
125 |
|
126 |
# 4. Prepare Submission
|
127 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
128 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
129 |
print(status_update)
|
|
|
130 |
|
131 |
# 5. Submit
|
132 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
133 |
try:
|
134 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
response.raise_for_status()
|
136 |
result_data = response.json()
|
|
|
137 |
final_status = (
|
138 |
f"Submission Successful!\n"
|
139 |
f"User: {result_data.get('username')}\n"
|
|
|
141 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
142 |
f"Message: {result_data.get('message', 'No message received.')}"
|
143 |
)
|
|
|
144 |
print("Submission successful.")
|
|
|
145 |
results_df = pd.DataFrame(results_log)
|
146 |
return final_status, results_df
|
|
|
147 |
except requests.exceptions.HTTPError as e:
|
148 |
error_detail = f"Server responded with status {e.response.status_code}."
|
149 |
try:
|
|
|
172 |
return status_message, results_df
|
173 |
|
174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
# --- Build Gradio Interface using Blocks ---
|
176 |
with gr.Blocks() as demo:
|
177 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
178 |
gr.Markdown(
|
179 |
"""
|
180 |
**Instructions:**
|
181 |
|
182 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
183 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
184 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
185 |
|
186 |
+
---
|
187 |
+
**Disclaimers:**
|
188 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
189 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
190 |
"""
|
191 |
)
|
192 |
|
193 |
+
gr.LoginButton()
|
|
|
|
|
194 |
|
195 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
196 |
|
197 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
198 |
+
# Removed max_rows=10 from DataFrame constructor
|
199 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
run_button.click(
|
202 |
fn=run_and_submit_all,
|
|
|
203 |
outputs=[status_output, results_table]
|
204 |
)
|
205 |
|
|
|
206 |
if __name__ == "__main__":
|
207 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
208 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
209 |
space_host_startup = os.getenv("SPACE_HOST")
|
210 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
211 |
|
212 |
if space_host_startup:
|
213 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
|
|
215 |
else:
|
216 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
217 |
|
218 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
219 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
220 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
221 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
|
|
224 |
|
225 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
226 |
|
227 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
228 |
demo.launch(debug=True, share=False)
|