Changed writer to gpt-4o-mini. Back to non cached due to issues
Browse files- agents/llama_index_agent.py +9 -0
- app.py +56 -257
agents/llama_index_agent.py
CHANGED
@@ -260,8 +260,17 @@ def create_writer_agent(model_config: Dict[str, Any]) -> ReActAgent:
|
|
260 |
When asked for "comma-separated list in alphabetical order": apple, banana, cherry
|
261 |
When asked for "single number": 42
|
262 |
When asked for "opposite of word 'right'": left
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
REMEMBER: Your ENTIRE response should be just the answer - nothing more, nothing less.
|
|
|
|
|
265 |
""",
|
266 |
llm=llm
|
267 |
)
|
|
|
260 |
When asked for "comma-separated list in alphabetical order": apple, banana, cherry
|
261 |
When asked for "single number": 42
|
262 |
When asked for "opposite of word 'right'": left
|
263 |
+
When asked for "How many ...": eleven
|
264 |
+
When asked for "What says Yoda": "May the force be with you"
|
265 |
+
|
266 |
+
## CONCRETE EXAMPLE:
|
267 |
+
When asked "The answer to the question of Universe, life and everything"
|
268 |
+
- WRONG ANSWER: The answer to the question is 42.
|
269 |
+
- RIGHT ANSWER: 42
|
270 |
|
271 |
REMEMBER: Your ENTIRE response should be just the answer - nothing more, nothing less.
|
272 |
+
|
273 |
+
DO NOT EXPLAIN THE ANSWER. SIMPLY WRITE BACK THE ANSWER.
|
274 |
""",
|
275 |
llm=llm
|
276 |
)
|
app.py
CHANGED
@@ -119,124 +119,16 @@ class BasicAgent:
|
|
119 |
return final_answer
|
120 |
|
121 |
|
122 |
-
|
123 |
-
"""Cache manager for storing and retrieving agent responses with persistence across HF rebuilds."""
|
124 |
-
|
125 |
-
def __init__(self, cache_name="agent_responses"):
|
126 |
-
"""Initialize the cache manager.
|
127 |
-
|
128 |
-
Args:
|
129 |
-
cache_name: Base name for the cache file
|
130 |
-
"""
|
131 |
-
# Use /data directory for persistence in HF Spaces
|
132 |
-
# Fall back to local directory if running locally
|
133 |
-
if os.path.exists("/data") and os.access("/data", os.W_OK):
|
134 |
-
self.cache_dir = Path("/data")
|
135 |
-
print("Using HF Spaces persistent storage in /data directory")
|
136 |
-
else:
|
137 |
-
self.cache_dir = Path(".")
|
138 |
-
print("Using local directory for cache (not persistent across HF rebuilds)")
|
139 |
-
|
140 |
-
# Ensure directory exists
|
141 |
-
os.makedirs(self.cache_dir, exist_ok=True)
|
142 |
-
|
143 |
-
# Full path to cache file
|
144 |
-
self.cache_file = self.cache_dir / f"{cache_name}.json"
|
145 |
-
print(f"Cache file location: {self.cache_file}")
|
146 |
-
|
147 |
-
# Load the cache
|
148 |
-
self.cache = self._load_cache()
|
149 |
-
|
150 |
-
# Stats for the current session
|
151 |
-
self.cache_hits = 0
|
152 |
-
self.cache_misses = 0
|
153 |
-
|
154 |
-
def _load_cache(self):
|
155 |
-
"""Load the cache from disk."""
|
156 |
-
try:
|
157 |
-
if os.path.exists(self.cache_file):
|
158 |
-
with open(self.cache_file, 'r') as f:
|
159 |
-
cache_data = json.load(f)
|
160 |
-
print(f"Cache loaded with {len(cache_data)} entries")
|
161 |
-
return cache_data
|
162 |
-
print("No existing cache found, starting with empty cache")
|
163 |
-
return {}
|
164 |
-
except Exception as e:
|
165 |
-
print(f"Error loading cache: {e}. Starting with empty cache.")
|
166 |
-
return {}
|
167 |
-
|
168 |
-
def _save_cache(self):
|
169 |
-
"""Save the cache to disk."""
|
170 |
-
try:
|
171 |
-
with open(self.cache_file, 'w') as f:
|
172 |
-
json.dump(self.cache, f)
|
173 |
-
print(f"Cache saved with {len(self.cache)} entries")
|
174 |
-
except Exception as e:
|
175 |
-
print(f"Error saving cache: {e}")
|
176 |
-
|
177 |
-
def get_hash(self, question):
|
178 |
-
"""Create a consistent hash for a question."""
|
179 |
-
return hashlib.md5(question.encode('utf-8')).hexdigest()
|
180 |
-
|
181 |
-
def get(self, question):
|
182 |
-
"""Get a cached response if available.
|
183 |
-
|
184 |
-
Returns:
|
185 |
-
tuple: (cached_answer, hit_status)
|
186 |
-
- cached_answer: The cached answer or None if not found
|
187 |
-
- hit_status: True if cache hit, False if miss
|
188 |
-
"""
|
189 |
-
question_hash = self.get_hash(question)
|
190 |
-
if question_hash in self.cache:
|
191 |
-
# Only return answers marked as correct
|
192 |
-
entry = self.cache[question_hash]
|
193 |
-
if entry.get("is_correct", False):
|
194 |
-
self.cache_hits += 1
|
195 |
-
return entry["answer"], True
|
196 |
-
|
197 |
-
self.cache_misses += 1
|
198 |
-
return None, False
|
199 |
-
|
200 |
-
def update(self, question, answer, is_correct=False):
|
201 |
-
"""Update the cache with a new response.
|
202 |
-
|
203 |
-
Args:
|
204 |
-
question: The question text
|
205 |
-
answer: The agent's answer
|
206 |
-
is_correct: Whether the answer was correct
|
207 |
-
"""
|
208 |
-
question_hash = self.get_hash(question)
|
209 |
-
self.cache[question_hash] = {
|
210 |
-
"question": question,
|
211 |
-
"answer": answer,
|
212 |
-
"is_correct": is_correct
|
213 |
-
}
|
214 |
-
self._save_cache()
|
215 |
-
|
216 |
-
def get_stats(self):
|
217 |
-
"""Get cache statistics."""
|
218 |
-
total_entries = len(self.cache)
|
219 |
-
correct_entries = sum(1 for entry in self.cache.values() if entry.get("is_correct", False))
|
220 |
-
|
221 |
-
return {
|
222 |
-
"total_cached": total_entries,
|
223 |
-
"correct_cached": correct_entries,
|
224 |
-
"session_hits": self.cache_hits,
|
225 |
-
"session_misses": self.cache_misses
|
226 |
-
}
|
227 |
-
|
228 |
-
|
229 |
-
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
230 |
"""
|
231 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
232 |
-
and displays the results.
|
233 |
-
with known correct answers.
|
234 |
"""
|
235 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
236 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
237 |
|
238 |
if profile:
|
239 |
-
username
|
240 |
print(f"User logged in: {username}")
|
241 |
else:
|
242 |
print("User not logged in.")
|
@@ -245,17 +137,17 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
245 |
api_url = DEFAULT_API_URL
|
246 |
questions_url = f"{api_url}/questions"
|
247 |
submit_url = f"{api_url}/submit"
|
248 |
-
|
249 |
-
# Initialize the cache
|
250 |
-
cache = ResponseCache()
|
251 |
-
print(f"Cache loaded. Stats: {cache.get_stats()}")
|
252 |
|
253 |
-
# 1. Instantiate Agent (
|
254 |
-
|
255 |
-
|
256 |
-
|
|
|
|
|
|
|
257 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
258 |
-
|
|
|
259 |
# 2. Fetch Questions
|
260 |
print(f"Fetching questions from: {questions_url}")
|
261 |
try:
|
@@ -277,144 +169,72 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
277 |
print(f"An unexpected error occurred fetching questions: {e}")
|
278 |
return f"An unexpected error occurred fetching questions: {e}", None
|
279 |
|
280 |
-
# 3. Run your Agent
|
281 |
results_log = []
|
282 |
answers_payload = []
|
283 |
-
|
284 |
-
|
285 |
-
print(f"Processing {len(questions_data)} questions...")
|
286 |
-
|
287 |
for item in questions_data:
|
288 |
task_id = item.get("task_id")
|
289 |
question_text = item.get("question")
|
290 |
-
|
291 |
if not task_id or question_text is None:
|
292 |
print(f"Skipping item with missing task_id or question: {item}")
|
293 |
continue
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
cache_usage["hits"] += 1
|
302 |
-
print(f"✅ Cache hit for task {task_id}. Using cached answer.")
|
303 |
-
else:
|
304 |
-
# Cache miss - run the agent
|
305 |
-
cache_usage["misses"] += 1
|
306 |
-
print(f"🔄 Cache miss for task {task_id}. Running agent...")
|
307 |
-
|
308 |
-
# Lazy initialization of agent
|
309 |
-
if agent is None:
|
310 |
-
try:
|
311 |
-
print("Initializing agent...")
|
312 |
-
agent = BasicAgent()
|
313 |
-
except Exception as e:
|
314 |
-
print(f"Error instantiating agent: {e}")
|
315 |
-
return f"Error initializing agent: {e}", None
|
316 |
-
|
317 |
-
try:
|
318 |
-
submitted_answer = agent(question_text)
|
319 |
-
except Exception as e:
|
320 |
-
print(f"Error running agent on task {task_id}: {e}")
|
321 |
-
submitted_answer = f"AGENT ERROR: {e}"
|
322 |
-
|
323 |
-
# Add to results and submission payload
|
324 |
-
answers_payload.append({
|
325 |
-
"task_id": task_id,
|
326 |
-
"submitted_answer": submitted_answer
|
327 |
-
})
|
328 |
-
|
329 |
-
results_log.append({
|
330 |
-
"Task ID": task_id,
|
331 |
-
"Question": question_text,
|
332 |
-
"Submitted Answer": submitted_answer,
|
333 |
-
"From Cache": is_cache_hit
|
334 |
-
})
|
335 |
|
336 |
if not answers_payload:
|
337 |
-
print("
|
338 |
-
return "
|
339 |
|
340 |
# 4. Prepare Submission
|
341 |
-
submission_data = {
|
342 |
-
|
343 |
-
"agent_code": agent_code,
|
344 |
-
"answers": answers_payload
|
345 |
-
}
|
346 |
-
|
347 |
-
status_update = (
|
348 |
-
f"Finished processing questions. "
|
349 |
-
f"Cache: {cache_usage['hits']} hits, {cache_usage['misses']} misses. "
|
350 |
-
f"Submitting {len(answers_payload)} answers for user '{username}'..."
|
351 |
-
)
|
352 |
print(status_update)
|
353 |
|
354 |
-
# 5. Submit
|
355 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
356 |
try:
|
357 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
358 |
response.raise_for_status()
|
359 |
result_data = response.json()
|
360 |
-
|
361 |
-
# Update cache with correct answers
|
362 |
-
if "task_results" in result_data:
|
363 |
-
cache_updates = 0
|
364 |
-
for task_result in result_data["task_results"]:
|
365 |
-
task_id = task_result.get("task_id")
|
366 |
-
is_correct = task_result.get("is_correct", False)
|
367 |
-
|
368 |
-
# Find the matching question and answer
|
369 |
-
for item in questions_data:
|
370 |
-
if item.get("task_id") == task_id:
|
371 |
-
question = item.get("question")
|
372 |
-
|
373 |
-
# Find the matching submitted answer
|
374 |
-
for answer_item in answers_payload:
|
375 |
-
if answer_item.get("task_id") == task_id:
|
376 |
-
answer = answer_item.get("submitted_answer")
|
377 |
-
|
378 |
-
# Only cache correct answers
|
379 |
-
if is_correct:
|
380 |
-
cache.update(question, answer, is_correct=True)
|
381 |
-
cache_updates += 1
|
382 |
-
break
|
383 |
-
|
384 |
-
print(f"Updated cache with {cache_updates} correct answers.")
|
385 |
-
|
386 |
-
# Prepare final status message
|
387 |
-
cache_stats = cache.get_stats()
|
388 |
final_status = (
|
389 |
f"Submission Successful!\n"
|
390 |
f"User: {result_data.get('username')}\n"
|
391 |
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
392 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
393 |
-
f"Cache Performance: {cache_usage['hits']} hits, {cache_usage['misses']} misses\n"
|
394 |
-
f"Total Cached Correct Answers: {cache_stats['correct_cached']}\n"
|
395 |
f"Message: {result_data.get('message', 'No message received.')}"
|
396 |
)
|
397 |
-
|
398 |
-
# Add cache information to results dataframe
|
399 |
results_df = pd.DataFrame(results_log)
|
400 |
-
|
401 |
-
# If the response includes detailed results, add correctness to the DataFrame
|
402 |
-
if "task_results" in result_data:
|
403 |
-
# Create a mapping of task_id to correctness
|
404 |
-
correctness_map = {
|
405 |
-
result["task_id"]: result["is_correct"]
|
406 |
-
for result in result_data["task_results"]
|
407 |
-
}
|
408 |
-
|
409 |
-
# Add a column for correctness
|
410 |
-
results_df["Is Correct"] = results_df["Task ID"].map(
|
411 |
-
lambda x: correctness_map.get(x, "Unknown")
|
412 |
-
)
|
413 |
-
|
414 |
return final_status, results_df
|
415 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
416 |
except Exception as e:
|
417 |
-
status_message = f"
|
418 |
print(status_message)
|
419 |
results_df = pd.DataFrame(results_log)
|
420 |
return status_message, results_df
|
@@ -422,21 +242,17 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
422 |
|
423 |
# --- Build Gradio Interface using Blocks ---
|
424 |
with gr.Blocks() as demo:
|
425 |
-
gr.Markdown("# Basic Agent Evaluation Runner
|
426 |
gr.Markdown(
|
427 |
"""
|
428 |
**Instructions:**
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
433 |
-
|
434 |
-
**Caching Enabled**: Correct answers are cached between runs to speed up evaluation.
|
435 |
-
|
436 |
---
|
437 |
**Disclaimers:**
|
438 |
-
Once clicking on the "submit button, it can take quite some time (this is the time for the agent to go through all the questions).
|
439 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution.
|
440 |
"""
|
441 |
)
|
442 |
|
@@ -445,24 +261,14 @@ with gr.Blocks() as demo:
|
|
445 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
446 |
|
447 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
448 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
449 |
|
450 |
-
# Display current cache status
|
451 |
-
cache = ResponseCache()
|
452 |
-
cache_stats = cache.get_stats()
|
453 |
-
|
454 |
-
gr.Markdown(
|
455 |
-
f"**Cache Status**: {cache_stats['correct_cached']} correct answers cached out of {cache_stats['total_cached']} total entries."
|
456 |
-
)
|
457 |
-
|
458 |
run_button.click(
|
459 |
fn=run_and_submit_all,
|
460 |
outputs=[status_output, results_table]
|
461 |
)
|
462 |
|
463 |
-
|
464 |
-
|
465 |
-
# Add these imports to your existing imports
|
466 |
if __name__ == "__main__":
|
467 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
468 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
@@ -484,12 +290,5 @@ if __name__ == "__main__":
|
|
484 |
|
485 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
486 |
|
487 |
-
# Check cache persistence
|
488 |
-
cache = ResponseCache()
|
489 |
-
stats = cache.get_stats()
|
490 |
-
print(f"Cache loaded with {stats['correct_cached']} correct answers out of {stats['total_cached']} total entries")
|
491 |
-
|
492 |
-
|
493 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
494 |
demo.launch(debug=True, share=False)
|
495 |
-
|
|
|
119 |
return final_answer
|
120 |
|
121 |
|
122 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
"""
|
124 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
125 |
+
and displays the results.
|
|
|
126 |
"""
|
127 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
128 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
129 |
|
130 |
if profile:
|
131 |
+
username= f"{profile.username}"
|
132 |
print(f"User logged in: {username}")
|
133 |
else:
|
134 |
print("User not logged in.")
|
|
|
137 |
api_url = DEFAULT_API_URL
|
138 |
questions_url = f"{api_url}/questions"
|
139 |
submit_url = f"{api_url}/submit"
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
142 |
+
try:
|
143 |
+
agent = BasicAgent()
|
144 |
+
except Exception as e:
|
145 |
+
print(f"Error instantiating agent: {e}")
|
146 |
+
return f"Error initializing agent: {e}", None
|
147 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
148 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
149 |
+
print(agent_code)
|
150 |
+
|
151 |
# 2. Fetch Questions
|
152 |
print(f"Fetching questions from: {questions_url}")
|
153 |
try:
|
|
|
169 |
print(f"An unexpected error occurred fetching questions: {e}")
|
170 |
return f"An unexpected error occurred fetching questions: {e}", None
|
171 |
|
172 |
+
# 3. Run your Agent
|
173 |
results_log = []
|
174 |
answers_payload = []
|
175 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
|
|
|
|
|
|
176 |
for item in questions_data:
|
177 |
task_id = item.get("task_id")
|
178 |
question_text = item.get("question")
|
|
|
179 |
if not task_id or question_text is None:
|
180 |
print(f"Skipping item with missing task_id or question: {item}")
|
181 |
continue
|
182 |
+
try:
|
183 |
+
submitted_answer = agent(question_text)
|
184 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
185 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
186 |
+
except Exception as e:
|
187 |
+
print(f"Error running agent on task {task_id}: {e}")
|
188 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
if not answers_payload:
|
191 |
+
print("Agent did not produce any answers to submit.")
|
192 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
193 |
|
194 |
# 4. Prepare Submission
|
195 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
196 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
print(status_update)
|
198 |
|
199 |
+
# 5. Submit
|
200 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
201 |
try:
|
202 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
203 |
response.raise_for_status()
|
204 |
result_data = response.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
final_status = (
|
206 |
f"Submission Successful!\n"
|
207 |
f"User: {result_data.get('username')}\n"
|
208 |
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
209 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
|
|
|
|
210 |
f"Message: {result_data.get('message', 'No message received.')}"
|
211 |
)
|
212 |
+
print("Submission successful.")
|
|
|
213 |
results_df = pd.DataFrame(results_log)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
return final_status, results_df
|
215 |
+
except requests.exceptions.HTTPError as e:
|
216 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
217 |
+
try:
|
218 |
+
error_json = e.response.json()
|
219 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
220 |
+
except requests.exceptions.JSONDecodeError:
|
221 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
222 |
+
status_message = f"Submission Failed: {error_detail}"
|
223 |
+
print(status_message)
|
224 |
+
results_df = pd.DataFrame(results_log)
|
225 |
+
return status_message, results_df
|
226 |
+
except requests.exceptions.Timeout:
|
227 |
+
status_message = "Submission Failed: The request timed out."
|
228 |
+
print(status_message)
|
229 |
+
results_df = pd.DataFrame(results_log)
|
230 |
+
return status_message, results_df
|
231 |
+
except requests.exceptions.RequestException as e:
|
232 |
+
status_message = f"Submission Failed: Network error - {e}"
|
233 |
+
print(status_message)
|
234 |
+
results_df = pd.DataFrame(results_log)
|
235 |
+
return status_message, results_df
|
236 |
except Exception as e:
|
237 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
238 |
print(status_message)
|
239 |
results_df = pd.DataFrame(results_log)
|
240 |
return status_message, results_df
|
|
|
242 |
|
243 |
# --- Build Gradio Interface using Blocks ---
|
244 |
with gr.Blocks() as demo:
|
245 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
246 |
gr.Markdown(
|
247 |
"""
|
248 |
**Instructions:**
|
249 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
250 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
251 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
|
|
|
|
|
|
|
|
252 |
---
|
253 |
**Disclaimers:**
|
254 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
255 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
256 |
"""
|
257 |
)
|
258 |
|
|
|
261 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
262 |
|
263 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
264 |
+
# Removed max_rows=10 from DataFrame constructor
|
265 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
266 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
run_button.click(
|
268 |
fn=run_and_submit_all,
|
269 |
outputs=[status_output, results_table]
|
270 |
)
|
271 |
|
|
|
|
|
|
|
272 |
if __name__ == "__main__":
|
273 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
274 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
|
|
290 |
|
291 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
292 |
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
294 |
demo.launch(debug=True, share=False)
|
|