Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,098 Bytes
1809fe4 696b9f6 e7bca60 1809fe4 ab1a5ae 1809fe4 2f98862 1809fe4 e7bca60 1809fe4 e7bca60 ab1a5ae 1809fe4 696b9f6 b078538 1809fe4 b078538 e7bca60 1809fe4 b078538 ef798fd 1809fe4 c7a648a b078538 e7bca60 b078538 e7bca60 b078538 e7bca60 b078538 e7bca60 b078538 ef798fd e7bca60 b078538 ef798fd b078538 e7bca60 b078538 1809fe4 e7bca60 988efc8 e7bca60 ef798fd e7bca60 ef798fd e7bca60 ef798fd e7bca60 ef798fd e7bca60 ef798fd e7bca60 2f98862 ef798fd ab1a5ae e7bca60 ab1a5ae f1b0be5 ef798fd e7bca60 f1b0be5 41481bc f1b0be5 ef798fd 434fa76 ef798fd 434fa76 ef798fd 434fa76 ef798fd 434fa76 ef798fd e7bca60 ef798fd e7bca60 ef798fd e7bca60 ef798fd e7bca60 ef798fd e7bca60 ef798fd e7bca60 ef798fd e7bca60 ef798fd e7bca60 ef798fd e7bca60 1809fe4 e7bca60 ef798fd e7bca60 ef798fd e7bca60 ef798fd e7bca60 ef798fd e7bca60 ef798fd e7bca60 ef798fd e7bca60 ef798fd e7bca60 ef798fd e7bca60 f1b0be5 ef798fd e7bca60 1809fe4 e7bca60 ef798fd 1809fe4 e7bca60 1809fe4 e7bca60 2f98862 e7bca60 1809fe4 e7bca60 ef798fd e7bca60 ef798fd e7bca60 ef798fd e7bca60 ef798fd e7bca60 ef798fd c7a648a 2f98862 ef798fd e7bca60 1809fe4 e7bca60 ef798fd 1809fe4 e7bca60 ef798fd e7bca60 ef798fd e7bca60 ef798fd e7bca60 1809fe4 ef798fd c7a648a 1809fe4 e7bca60 ef798fd e7bca60 ef798fd e7bca60 ef798fd c7a648a 1809fe4 e7bca60 ef798fd e7bca60 ef798fd e7bca60 1809fe4 ef798fd e7bca60 ef798fd e7bca60 f1b0be5 1809fe4 ef798fd 1809fe4 ef798fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
import gradio as gr
import spaces
import os
import shutil
import json
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from trellis.pipelines import TrellisTextTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
import traceback
import sys
# Add JSON encoder for NumPy arrays
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
return json.JSONEncoder.default(self, obj)
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
def start_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
# Use shutil.rmtree with ignore_errors=True for robustness
shutil.rmtree(user_dir, ignore_errors=True)
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
# Ensure tensors are created on the correct device ('cuda')
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda', dtype=torch.float32)
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda', dtype=torch.float32)
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda', dtype=torch.float32)
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda', dtype=torch.float32)
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda', dtype=torch.float32)
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda', dtype=torch.float32),
faces=torch.tensor(state['mesh']['faces'], device='cuda', dtype=torch.int64), # Faces are usually integers
)
return gs, mesh
def get_seed(randomize_seed: bool, seed: int) -> int:
"""
Get the random seed.
"""
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
@spaces.GPU
def text_to_3d(
prompt: str,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
req: gr.Request,
) -> dict: # MODIFIED: Now returns only the state dict
"""
Convert a text prompt to a 3D model state object.
Args:
prompt (str): The text prompt.
seed (int): The random seed.
ss_guidance_strength (float): The guidance strength for sparse structure generation.
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
slat_guidance_strength (float): The guidance strength for structured latent generation.
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
Returns:
dict: The JSON-serializable state object containing the generated 3D model info.
"""
# Ensure user directory exists (redundant if start_session is always called, but safe)
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
print(f"[{req.session_hash}] Running text_to_3d for prompt: {prompt}") # Add logging
outputs = pipeline.run(
prompt,
seed=seed,
formats=["gaussian", "mesh"],
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
# REMOVED: Video rendering logic moved to render_preview_video
# Create the state object and ensure it's JSON serializable for API calls
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
# Convert to serializable format
serializable_state = json.loads(json.dumps(state, cls=NumpyEncoder))
print(f"[{req.session_hash}] text_to_3d completed. Returning state.") # Modified log message
torch.cuda.empty_cache()
# --- REVERTED DEBUGGING ---
# Remove the temporary simple dictionary return
# print("[DEBUG] Returning simple dict for API test.")
# return {"status": "test_success", "received_prompt": prompt}
# --- END REVERTED DEBUGGING ---
# Original return line (restored):
return serializable_state # MODIFIED: Return only state
# --- NEW FUNCTION ---
@spaces.GPU
def render_preview_video(state: dict, req: gr.Request) -> str:
"""
Renders a preview video from the provided state object.
Args:
state (dict): The state object containing Gaussian and mesh data.
req (gr.Request): Gradio request object for session hash.
Returns:
str: The path to the rendered video file.
"""
if not state:
print(f"[{req.session_hash}] render_preview_video called with empty state. Returning None.")
return None
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True) # Ensure directory exists
print(f"[{req.session_hash}] Unpacking state for video rendering.")
# Only unpack gs, as mesh causes type errors with render_utils after unpacking
gs, _ = unpack_state(state) # We still need the mesh for GLB, but not for this video preview
print(f"[{req.session_hash}] Rendering video (Gaussian only)...")
# Render ONLY the Gaussian splats, as rendering the unpacked mesh fails
video = render_utils.render_video(gs, num_frames=120)['color']
# REMOVED: video_geo = render_utils.render_video(mesh, num_frames=120)['normal']
# REMOVED: video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
video_path = os.path.join(user_dir, 'preview_sample.mp4')
print(f"[{req.session_hash}] Saving video to {video_path}")
# Save only the Gaussian render
imageio.mimsave(video_path, video, fps=15)
torch.cuda.empty_cache()
return video_path
# --- END NEW FUNCTION ---
@spaces.GPU(duration=90)
def extract_glb(
state: dict,
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> Tuple[str, str]:
"""
Extract a GLB file from the 3D model state.
Args:
state (dict): The state of the generated 3D model.
mesh_simplify (float): The mesh simplification factor.
texture_size (int): The texture resolution.
Returns:
str: The path to the extracted GLB file (for Model3D component).
str: The path to the extracted GLB file (for DownloadButton).
"""
if not state:
print(f"[{req.session_hash}] extract_glb called with empty state. Returning None.")
return None, None # Return Nones if state is missing
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
print(f"[{req.session_hash}] Unpacking state for GLB extraction.") # Add logging
gs, mesh = unpack_state(state)
print(f"[{req.session_hash}] Extracting GLB (simplify={mesh_simplify}, texture={texture_size})...") # Add logging
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = os.path.join(user_dir, 'sample.glb')
print(f"[{req.session_hash}] Saving GLB to {glb_path}") # Add logging
glb.export(glb_path)
torch.cuda.empty_cache()
# Return the same path for both Model3D and DownloadButton components
return glb_path, glb_path
@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
"""
Extract a Gaussian PLY file from the 3D model state.
Args:
state (dict): The state of the generated 3D model.
Returns:
str: The path to the extracted Gaussian file (for Model3D component).
str: The path to the extracted Gaussian file (for DownloadButton).
"""
if not state:
print(f"[{req.session_hash}] extract_gaussian called with empty state. Returning None.")
return None, None # Return Nones if state is missing
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
print(f"[{req.session_hash}] Unpacking state for Gaussian extraction.") # Add logging
gs, _ = unpack_state(state)
gaussian_path = os.path.join(user_dir, 'sample.ply')
print(f"[{req.session_hash}] Saving Gaussian PLY to {gaussian_path}") # Add logging
gs.save_ply(gaussian_path)
torch.cuda.empty_cache()
# Return the same path for both Model3D and DownloadButton components
return gaussian_path, gaussian_path
# --- NEW COMBINED API FUNCTION ---
@spaces.GPU(duration=120) # Allow more time for combined generation + extraction
def generate_and_extract_glb(
# Inputs mirror text_to_3d and extract_glb settings
prompt: str,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
mesh_simplify: float, # Added from extract_glb
texture_size: int, # Added from extract_glb
req: gr.Request,
) -> str: # MODIFIED: Returns only the final GLB path string
"""
Combines 3D model generation and GLB extraction into a single step
for API usage, avoiding the need to transfer the state object.
Args:
prompt (str): Text prompt for generation.
seed (int): Random seed.
ss_guidance_strength (float): Sparse structure guidance.
ss_sampling_steps (int): Sparse structure steps.
slat_guidance_strength (float): Structured latent guidance.
slat_sampling_steps (int): Structured latent steps.
mesh_simplify (float): Mesh simplification factor for GLB.
texture_size (int): Texture resolution for GLB.
req (gr.Request): Gradio request object.
Returns:
str: The absolute path to the generated GLB file within the Space's filesystem.
Returns None if any step fails.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
print(f"[{req.session_hash}] API: Starting combined generation and extraction for prompt: {prompt}")
# --- Step 1: Generate 3D Model (adapted from text_to_3d) ---
try:
print(f"[{req.session_hash}] API: Running generation pipeline...")
outputs = pipeline.run(
prompt,
seed=seed,
formats=["gaussian", "mesh"], # Need both for GLB extraction
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
# Keep handles to the direct outputs (no need to pack/unpack state)
gs_output = outputs['gaussian'][0]
mesh_output = outputs['mesh'][0]
print(f"[{req.session_hash}] API: Generation pipeline completed.")
except Exception as e:
print(f"[{req.session_hash}] API: ERROR during generation pipeline: {e}")
traceback.print_exc()
torch.cuda.empty_cache()
return None # Return None on failure
# --- Step 2: Extract GLB (adapted from extract_glb) ---
try:
print(f"[{req.session_hash}] API: Extracting GLB (simplify={mesh_simplify}, texture={texture_size})...")
# Directly use the outputs from the pipeline
glb = postprocessing_utils.to_glb(gs_output, mesh_output, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = os.path.join(user_dir, 'api_generated_sample.glb') # Use a distinct name for API outputs
print(f"[{req.session_hash}] API: Saving GLB to {glb_path}")
glb.export(glb_path)
print(f"[{req.session_hash}] API: GLB extraction completed.")
except Exception as e:
print(f"[{req.session_hash}] API: ERROR during GLB extraction: {e}")
traceback.print_exc()
torch.cuda.empty_cache()
return None # Return None on failure
torch.cuda.empty_cache()
print(f"[{req.session_hash}] API: Combined process successful. Returning GLB path: {glb_path}")
return glb_path # Return only the path to the generated GLB
# --- END NEW COMBINED API FUNCTION ---
# State object to hold the generated model info between steps
output_buf = gr.State()
# Video component placeholder (will be populated by render_preview_video)
# video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) # Defined later inside the Blocks
with gr.Blocks(delete_cache=(600, 600)) as demo:
gr.Markdown("""
## Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
* Type a text prompt and click "Generate" to create a 3D asset.
* The preview video will appear after generation.
* If you find the generated 3D asset satisfactory, click "Extract GLB" or "Extract Gaussian" to extract the file and download it.
""")
with gr.Row():
with gr.Column():
text_prompt = gr.Textbox(label="Text Prompt", lines=5)
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1)
generate_btn = gr.Button("Generate")
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
with gr.Row():
# Buttons start non-interactive, enabled after generation
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
gr.Markdown("""
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
""")
with gr.Column():
# Define UI components here
video_output = gr.Video(label="Generated 3D Asset Preview", autoplay=True, loop=True, height=300)
model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300)
with gr.Row():
# Buttons start non-interactive, enabled after extraction
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
# Define the state buffer here, outside the component definitions but inside the Blocks scope
output_buf = gr.State()
# --- Handlers ---
demo.load(start_session)
demo.unload(end_session)
# --- MODIFIED UI CHAIN ---
# 1. Get Seed
# 2. Run text_to_3d -> outputs state to output_buf
# 3. Run render_preview_video (using state from output_buf) -> outputs video to video_output
# 4. Enable extraction buttons
generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
queue=True # Use queue for potentially long-running steps
).then(
text_to_3d,
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf], # text_to_3d now ONLY outputs state
api_name="text_to_3d" # Keep API name consistent if needed
).then(
render_preview_video, # NEW step: Render video from state
inputs=[output_buf],
outputs=[video_output],
api_name="render_preview_video" # Assign API name if you want to call this separately
).then(
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]), # Enable extraction buttons
outputs=[extract_glb_btn, extract_gs_btn],
)
# Clear video and disable extraction buttons if prompt is cleared or generation restarted
# (Consider adding logic to clear prompt on successful generation if desired)
text_prompt.change( # Example: Clear video if prompt changes
lambda: (None, gr.Button(interactive=False), gr.Button(interactive=False)),
outputs=[video_output, extract_glb_btn, extract_gs_btn]
)
video_output.clear( # This might be redundant if text_prompt.change handles it
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
outputs=[extract_glb_btn, extract_gs_btn],
)
# --- Extraction Handlers ---
# GLB Extraction: Takes state from output_buf, outputs model and download path
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb], # Outputs to Model3D and DownloadButton path
api_name="extract_glb"
).then(
lambda: gr.Button(interactive=True), # Enable download button
outputs=[download_glb],
)
# Gaussian Extraction: Takes state from output_buf, outputs model and download path
extract_gs_btn.click(
extract_gaussian,
inputs=[output_buf],
outputs=[model_output, download_gs], # Outputs to Model3D and DownloadButton path
api_name="extract_gaussian"
).then(
lambda: gr.Button(interactive=True), # Enable download button
outputs=[download_gs],
)
# Clear model and disable download buttons if video/state is cleared
model_output.clear(
lambda: (gr.Button(interactive=False), gr.Button(interactive=False)),
outputs=[download_glb, download_gs], # Disable both download buttons
)
# --- NEW API ENDPOINT DEFINITION ---
# Define the combined function as an API endpoint.
# This is *separate* from the UI button clicks.
# It directly calls the combined function.
demo.load(
None, # No function needed on load for this endpoint
inputs=[
text_prompt, # Map inputs from API request data based on order
seed,
ss_guidance_strength,
ss_sampling_steps,
slat_guidance_strength,
slat_sampling_steps,
mesh_simplify,
texture_size
],
outputs=None, # Output is handled by the function return for the API
api_name="generate_and_extract_glb" # Assign the specific API name
)
# --- Launch the Gradio app ---
if __name__ == "__main__":
print("Loading Trellis pipeline...")
# Consider adding error handling for pipeline loading
try:
pipeline = TrellisTextTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-text-xlarge")
pipeline.cuda()
print("Pipeline loaded successfully.")
except Exception as e:
print(f"Error loading pipeline: {e}")
# Optionally exit or provide a fallback UI
sys.exit(1)
print("Launching Gradio demo...")
# Enable queue for handling multiple users/requests
# Set share=True if you need a public link (requires login for private spaces)
demo.queue().launch() |