Spaces:
Running
on
Zero
Running
on
Zero
gemini inside cursor state change
Browse files
app.py
CHANGED
@@ -39,7 +39,8 @@ def start_session(req: gr.Request):
|
|
39 |
|
40 |
def end_session(req: gr.Request):
|
41 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
42 |
-
shutil.rmtree
|
|
|
43 |
|
44 |
|
45 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
@@ -68,15 +69,16 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
|
68 |
opacity_bias=state['gaussian']['opacity_bias'],
|
69 |
scaling_activation=state['gaussian']['scaling_activation'],
|
70 |
)
|
71 |
-
|
72 |
-
gs.
|
73 |
-
gs.
|
74 |
-
gs.
|
75 |
-
gs.
|
|
|
76 |
|
77 |
mesh = edict(
|
78 |
-
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
|
79 |
-
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
80 |
)
|
81 |
|
82 |
return gs, mesh
|
@@ -98,9 +100,9 @@ def text_to_3d(
|
|
98 |
slat_guidance_strength: float,
|
99 |
slat_sampling_steps: int,
|
100 |
req: gr.Request,
|
101 |
-
) ->
|
102 |
"""
|
103 |
-
Convert
|
104 |
Args:
|
105 |
prompt (str): The text prompt.
|
106 |
seed (int): The random seed.
|
@@ -109,11 +111,14 @@ def text_to_3d(
|
|
109 |
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
110 |
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
111 |
Returns:
|
112 |
-
dict: The
|
113 |
-
str: The path to the video of the 3D model.
|
114 |
"""
|
|
|
115 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
116 |
-
os.makedirs(user_dir, exist_ok=True)
|
|
|
|
|
|
|
117 |
outputs = pipeline.run(
|
118 |
prompt,
|
119 |
seed=seed,
|
@@ -127,19 +132,58 @@ def text_to_3d(
|
|
127 |
"cfg_strength": slat_guidance_strength,
|
128 |
},
|
129 |
)
|
130 |
-
|
131 |
-
|
132 |
-
video =
|
133 |
-
|
134 |
-
|
|
|
|
|
135 |
|
136 |
# Create the state object and ensure it's JSON serializable for API calls
|
137 |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
138 |
# Convert to serializable format
|
139 |
serializable_state = json.loads(json.dumps(state, cls=NumpyEncoder))
|
140 |
|
|
|
|
|
141 |
torch.cuda.empty_cache()
|
142 |
-
return serializable_state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
|
145 |
@spaces.GPU(duration=90)
|
@@ -150,50 +194,76 @@ def extract_glb(
|
|
150 |
req: gr.Request,
|
151 |
) -> Tuple[str, str]:
|
152 |
"""
|
153 |
-
Extract a GLB file from the 3D model.
|
154 |
Args:
|
155 |
state (dict): The state of the generated 3D model.
|
156 |
mesh_simplify (float): The mesh simplification factor.
|
157 |
texture_size (int): The texture resolution.
|
158 |
Returns:
|
159 |
-
str: The path to the extracted GLB file.
|
|
|
160 |
"""
|
|
|
|
|
|
|
|
|
161 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
162 |
os.makedirs(user_dir, exist_ok=True)
|
|
|
|
|
163 |
gs, mesh = unpack_state(state)
|
|
|
|
|
164 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
165 |
glb_path = os.path.join(user_dir, 'sample.glb')
|
|
|
166 |
glb.export(glb_path)
|
|
|
167 |
torch.cuda.empty_cache()
|
|
|
168 |
return glb_path, glb_path
|
169 |
|
170 |
|
171 |
@spaces.GPU
|
172 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
173 |
"""
|
174 |
-
Extract a Gaussian file from the 3D model.
|
175 |
Args:
|
176 |
state (dict): The state of the generated 3D model.
|
177 |
Returns:
|
178 |
-
str: The path to the extracted Gaussian file.
|
|
|
179 |
"""
|
|
|
|
|
|
|
|
|
180 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
181 |
os.makedirs(user_dir, exist_ok=True)
|
|
|
|
|
182 |
gs, _ = unpack_state(state)
|
|
|
183 |
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
|
|
184 |
gs.save_ply(gaussian_path)
|
|
|
185 |
torch.cuda.empty_cache()
|
|
|
186 |
return gaussian_path, gaussian_path
|
187 |
|
188 |
|
189 |
-
|
190 |
-
|
|
|
|
|
191 |
|
192 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
193 |
gr.Markdown("""
|
194 |
## Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
195 |
* Type a text prompt and click "Generate" to create a 3D asset.
|
196 |
-
*
|
|
|
197 |
""")
|
198 |
|
199 |
with gr.Row():
|
@@ -219,6 +289,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
219 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
220 |
|
221 |
with gr.Row():
|
|
|
222 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
223 |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
224 |
gr.Markdown("""
|
@@ -226,63 +297,102 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
226 |
""")
|
227 |
|
228 |
with gr.Column():
|
229 |
-
|
|
|
230 |
model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300)
|
231 |
|
232 |
with gr.Row():
|
|
|
233 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
234 |
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
235 |
|
|
|
236 |
output_buf = gr.State()
|
237 |
|
238 |
-
# Handlers
|
239 |
demo.load(start_session)
|
240 |
demo.unload(end_session)
|
241 |
|
|
|
|
|
|
|
|
|
|
|
242 |
generate_btn.click(
|
243 |
get_seed,
|
244 |
inputs=[randomize_seed, seed],
|
245 |
outputs=[seed],
|
|
|
246 |
).then(
|
247 |
text_to_3d,
|
248 |
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
249 |
-
outputs=[output_buf,
|
|
|
250 |
).then(
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
252 |
outputs=[extract_glb_btn, extract_gs_btn],
|
253 |
)
|
254 |
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
|
257 |
outputs=[extract_glb_btn, extract_gs_btn],
|
258 |
)
|
259 |
|
|
|
|
|
260 |
extract_glb_btn.click(
|
261 |
extract_glb,
|
262 |
inputs=[output_buf, mesh_simplify, texture_size],
|
263 |
-
outputs=[model_output, download_glb],
|
|
|
264 |
).then(
|
265 |
-
lambda: gr.Button(interactive=True),
|
266 |
outputs=[download_glb],
|
267 |
)
|
268 |
|
|
|
269 |
extract_gs_btn.click(
|
270 |
extract_gaussian,
|
271 |
inputs=[output_buf],
|
272 |
-
outputs=[model_output, download_gs],
|
|
|
273 |
).then(
|
274 |
-
lambda: gr.Button(interactive=True),
|
275 |
outputs=[download_gs],
|
276 |
)
|
277 |
|
|
|
278 |
model_output.clear(
|
279 |
-
lambda: gr.Button(interactive=False),
|
280 |
-
outputs=[download_glb],
|
281 |
)
|
282 |
|
283 |
|
284 |
-
# Launch the Gradio app
|
285 |
if __name__ == "__main__":
|
286 |
-
|
287 |
-
pipeline
|
288 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
def end_session(req: gr.Request):
|
41 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
42 |
+
# Use shutil.rmtree with ignore_errors=True for robustness
|
43 |
+
shutil.rmtree(user_dir, ignore_errors=True)
|
44 |
|
45 |
|
46 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
|
|
69 |
opacity_bias=state['gaussian']['opacity_bias'],
|
70 |
scaling_activation=state['gaussian']['scaling_activation'],
|
71 |
)
|
72 |
+
# Ensure tensors are created on the correct device ('cuda')
|
73 |
+
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda', dtype=torch.float32)
|
74 |
+
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda', dtype=torch.float32)
|
75 |
+
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda', dtype=torch.float32)
|
76 |
+
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda', dtype=torch.float32)
|
77 |
+
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda', dtype=torch.float32)
|
78 |
|
79 |
mesh = edict(
|
80 |
+
vertices=torch.tensor(state['mesh']['vertices'], device='cuda', dtype=torch.float32),
|
81 |
+
faces=torch.tensor(state['mesh']['faces'], device='cuda', dtype=torch.int64), # Faces are usually integers
|
82 |
)
|
83 |
|
84 |
return gs, mesh
|
|
|
100 |
slat_guidance_strength: float,
|
101 |
slat_sampling_steps: int,
|
102 |
req: gr.Request,
|
103 |
+
) -> dict: # MODIFIED: Now returns only the state dict
|
104 |
"""
|
105 |
+
Convert a text prompt to a 3D model state object.
|
106 |
Args:
|
107 |
prompt (str): The text prompt.
|
108 |
seed (int): The random seed.
|
|
|
111 |
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
112 |
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
113 |
Returns:
|
114 |
+
dict: The JSON-serializable state object containing the generated 3D model info.
|
|
|
115 |
"""
|
116 |
+
# Ensure user directory exists (redundant if start_session is always called, but safe)
|
117 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
118 |
+
os.makedirs(user_dir, exist_ok=True)
|
119 |
+
|
120 |
+
print(f"[{req.session_hash}] Running text_to_3d for prompt: {prompt}") # Add logging
|
121 |
+
|
122 |
outputs = pipeline.run(
|
123 |
prompt,
|
124 |
seed=seed,
|
|
|
132 |
"cfg_strength": slat_guidance_strength,
|
133 |
},
|
134 |
)
|
135 |
+
|
136 |
+
# REMOVED: Video rendering logic moved to render_preview_video
|
137 |
+
# video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
138 |
+
# video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
139 |
+
# video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
140 |
+
# video_path = os.path.join(user_dir, 'sample.mp4')
|
141 |
+
# imageio.mimsave(video_path, video, fps=15)
|
142 |
|
143 |
# Create the state object and ensure it's JSON serializable for API calls
|
144 |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
145 |
# Convert to serializable format
|
146 |
serializable_state = json.loads(json.dumps(state, cls=NumpyEncoder))
|
147 |
|
148 |
+
print(f"[{req.session_hash}] text_to_3d completed. Returning state.") # Add logging
|
149 |
+
|
150 |
torch.cuda.empty_cache()
|
151 |
+
return serializable_state # MODIFIED: Return only state
|
152 |
+
|
153 |
+
# --- NEW FUNCTION ---
|
154 |
+
@spaces.GPU
|
155 |
+
def render_preview_video(state: dict, req: gr.Request) -> str:
|
156 |
+
"""
|
157 |
+
Renders a preview video from the provided state object.
|
158 |
+
Args:
|
159 |
+
state (dict): The state object containing Gaussian and mesh data.
|
160 |
+
req (gr.Request): Gradio request object for session hash.
|
161 |
+
Returns:
|
162 |
+
str: The path to the rendered video file.
|
163 |
+
"""
|
164 |
+
if not state:
|
165 |
+
print(f"[{req.session_hash}] render_preview_video called with empty state. Returning None.")
|
166 |
+
# Consider returning a placeholder or raising an error if state is required
|
167 |
+
return None
|
168 |
+
|
169 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
170 |
+
os.makedirs(user_dir, exist_ok=True) # Ensure directory exists
|
171 |
+
|
172 |
+
print(f"[{req.session_hash}] Unpacking state for video rendering.") # Add logging
|
173 |
+
gs, mesh = unpack_state(state)
|
174 |
+
|
175 |
+
print(f"[{req.session_hash}] Rendering video...") # Add logging
|
176 |
+
video = render_utils.render_video(gs, num_frames=120)['color']
|
177 |
+
video_geo = render_utils.render_video(mesh, num_frames=120)['normal']
|
178 |
+
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
179 |
+
|
180 |
+
video_path = os.path.join(user_dir, 'preview_sample.mp4') # Use a distinct name
|
181 |
+
print(f"[{req.session_hash}] Saving video to {video_path}") # Add logging
|
182 |
+
imageio.mimsave(video_path, video, fps=15)
|
183 |
+
|
184 |
+
torch.cuda.empty_cache()
|
185 |
+
return video_path
|
186 |
+
# --- END NEW FUNCTION ---
|
187 |
|
188 |
|
189 |
@spaces.GPU(duration=90)
|
|
|
194 |
req: gr.Request,
|
195 |
) -> Tuple[str, str]:
|
196 |
"""
|
197 |
+
Extract a GLB file from the 3D model state.
|
198 |
Args:
|
199 |
state (dict): The state of the generated 3D model.
|
200 |
mesh_simplify (float): The mesh simplification factor.
|
201 |
texture_size (int): The texture resolution.
|
202 |
Returns:
|
203 |
+
str: The path to the extracted GLB file (for Model3D component).
|
204 |
+
str: The path to the extracted GLB file (for DownloadButton).
|
205 |
"""
|
206 |
+
if not state:
|
207 |
+
print(f"[{req.session_hash}] extract_glb called with empty state. Returning None.")
|
208 |
+
return None, None # Return Nones if state is missing
|
209 |
+
|
210 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
211 |
os.makedirs(user_dir, exist_ok=True)
|
212 |
+
|
213 |
+
print(f"[{req.session_hash}] Unpacking state for GLB extraction.") # Add logging
|
214 |
gs, mesh = unpack_state(state)
|
215 |
+
|
216 |
+
print(f"[{req.session_hash}] Extracting GLB (simplify={mesh_simplify}, texture={texture_size})...") # Add logging
|
217 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
218 |
glb_path = os.path.join(user_dir, 'sample.glb')
|
219 |
+
print(f"[{req.session_hash}] Saving GLB to {glb_path}") # Add logging
|
220 |
glb.export(glb_path)
|
221 |
+
|
222 |
torch.cuda.empty_cache()
|
223 |
+
# Return the same path for both Model3D and DownloadButton components
|
224 |
return glb_path, glb_path
|
225 |
|
226 |
|
227 |
@spaces.GPU
|
228 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
229 |
"""
|
230 |
+
Extract a Gaussian PLY file from the 3D model state.
|
231 |
Args:
|
232 |
state (dict): The state of the generated 3D model.
|
233 |
Returns:
|
234 |
+
str: The path to the extracted Gaussian file (for Model3D component).
|
235 |
+
str: The path to the extracted Gaussian file (for DownloadButton).
|
236 |
"""
|
237 |
+
if not state:
|
238 |
+
print(f"[{req.session_hash}] extract_gaussian called with empty state. Returning None.")
|
239 |
+
return None, None # Return Nones if state is missing
|
240 |
+
|
241 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
242 |
os.makedirs(user_dir, exist_ok=True)
|
243 |
+
|
244 |
+
print(f"[{req.session_hash}] Unpacking state for Gaussian extraction.") # Add logging
|
245 |
gs, _ = unpack_state(state)
|
246 |
+
|
247 |
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
248 |
+
print(f"[{req.session_hash}] Saving Gaussian PLY to {gaussian_path}") # Add logging
|
249 |
gs.save_ply(gaussian_path)
|
250 |
+
|
251 |
torch.cuda.empty_cache()
|
252 |
+
# Return the same path for both Model3D and DownloadButton components
|
253 |
return gaussian_path, gaussian_path
|
254 |
|
255 |
|
256 |
+
# State object to hold the generated model info between steps
|
257 |
+
output_buf = gr.State()
|
258 |
+
# Video component placeholder (will be populated by render_preview_video)
|
259 |
+
# video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) # Defined later inside the Blocks
|
260 |
|
261 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
262 |
gr.Markdown("""
|
263 |
## Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
264 |
* Type a text prompt and click "Generate" to create a 3D asset.
|
265 |
+
* The preview video will appear after generation.
|
266 |
+
* If you find the generated 3D asset satisfactory, click "Extract GLB" or "Extract Gaussian" to extract the file and download it.
|
267 |
""")
|
268 |
|
269 |
with gr.Row():
|
|
|
289 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
290 |
|
291 |
with gr.Row():
|
292 |
+
# Buttons start non-interactive, enabled after generation
|
293 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
294 |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
295 |
gr.Markdown("""
|
|
|
297 |
""")
|
298 |
|
299 |
with gr.Column():
|
300 |
+
# Define UI components here
|
301 |
+
video_output = gr.Video(label="Generated 3D Asset Preview", autoplay=True, loop=True, height=300)
|
302 |
model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300)
|
303 |
|
304 |
with gr.Row():
|
305 |
+
# Buttons start non-interactive, enabled after extraction
|
306 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
307 |
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
308 |
|
309 |
+
# Define the state buffer here, outside the component definitions but inside the Blocks scope
|
310 |
output_buf = gr.State()
|
311 |
|
312 |
+
# --- Handlers ---
|
313 |
demo.load(start_session)
|
314 |
demo.unload(end_session)
|
315 |
|
316 |
+
# --- MODIFIED UI CHAIN ---
|
317 |
+
# 1. Get Seed
|
318 |
+
# 2. Run text_to_3d -> outputs state to output_buf
|
319 |
+
# 3. Run render_preview_video (using state from output_buf) -> outputs video to video_output
|
320 |
+
# 4. Enable extraction buttons
|
321 |
generate_btn.click(
|
322 |
get_seed,
|
323 |
inputs=[randomize_seed, seed],
|
324 |
outputs=[seed],
|
325 |
+
queue=True # Use queue for potentially long-running steps
|
326 |
).then(
|
327 |
text_to_3d,
|
328 |
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
329 |
+
outputs=[output_buf], # text_to_3d now ONLY outputs state
|
330 |
+
api_name="text_to_3d" # Keep API name consistent if needed
|
331 |
).then(
|
332 |
+
render_preview_video, # NEW step: Render video from state
|
333 |
+
inputs=[output_buf],
|
334 |
+
outputs=[video_output],
|
335 |
+
api_name="render_preview_video" # Assign API name if you want to call this separately
|
336 |
+
).then(
|
337 |
+
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]), # Enable extraction buttons
|
338 |
outputs=[extract_glb_btn, extract_gs_btn],
|
339 |
)
|
340 |
|
341 |
+
# Clear video and disable extraction buttons if prompt is cleared or generation restarted
|
342 |
+
# (Consider adding logic to clear prompt on successful generation if desired)
|
343 |
+
text_prompt.change( # Example: Clear video if prompt changes
|
344 |
+
lambda: (None, gr.Button(interactive=False), gr.Button(interactive=False)),
|
345 |
+
outputs=[video_output, extract_glb_btn, extract_gs_btn]
|
346 |
+
)
|
347 |
+
video_output.clear( # This might be redundant if text_prompt.change handles it
|
348 |
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
|
349 |
outputs=[extract_glb_btn, extract_gs_btn],
|
350 |
)
|
351 |
|
352 |
+
# --- Extraction Handlers ---
|
353 |
+
# GLB Extraction: Takes state from output_buf, outputs model and download path
|
354 |
extract_glb_btn.click(
|
355 |
extract_glb,
|
356 |
inputs=[output_buf, mesh_simplify, texture_size],
|
357 |
+
outputs=[model_output, download_glb], # Outputs to Model3D and DownloadButton path
|
358 |
+
api_name="extract_glb"
|
359 |
).then(
|
360 |
+
lambda: gr.Button(interactive=True), # Enable download button
|
361 |
outputs=[download_glb],
|
362 |
)
|
363 |
|
364 |
+
# Gaussian Extraction: Takes state from output_buf, outputs model and download path
|
365 |
extract_gs_btn.click(
|
366 |
extract_gaussian,
|
367 |
inputs=[output_buf],
|
368 |
+
outputs=[model_output, download_gs], # Outputs to Model3D and DownloadButton path
|
369 |
+
api_name="extract_gaussian"
|
370 |
).then(
|
371 |
+
lambda: gr.Button(interactive=True), # Enable download button
|
372 |
outputs=[download_gs],
|
373 |
)
|
374 |
|
375 |
+
# Clear model and disable download buttons if video/state is cleared
|
376 |
model_output.clear(
|
377 |
+
lambda: (gr.Button(interactive=False), gr.Button(interactive=False)),
|
378 |
+
outputs=[download_glb, download_gs], # Disable both download buttons
|
379 |
)
|
380 |
|
381 |
|
382 |
+
# --- Launch the Gradio app ---
|
383 |
if __name__ == "__main__":
|
384 |
+
print("Loading Trellis pipeline...")
|
385 |
+
# Consider adding error handling for pipeline loading
|
386 |
+
try:
|
387 |
+
pipeline = TrellisTextTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-text-xlarge")
|
388 |
+
pipeline.cuda()
|
389 |
+
print("Pipeline loaded successfully.")
|
390 |
+
except Exception as e:
|
391 |
+
print(f"Error loading pipeline: {e}")
|
392 |
+
# Optionally exit or provide a fallback UI
|
393 |
+
sys.exit(1)
|
394 |
+
|
395 |
+
print("Launching Gradio demo...")
|
396 |
+
# Enable queue for handling multiple users/requests
|
397 |
+
# Set share=True if you need a public link (requires login for private spaces)
|
398 |
+
demo.queue().launch()
|