Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
-
# Version: 1.1.
|
2 |
-
# Applied:
|
3 |
# - Removed unsupported inputs/outputs kwargs on demo.load/unload
|
4 |
# - Converted NumPy arrays to lists in pack_state for JSON safety
|
5 |
# - Fixed indentation in Blocks event-handlers
|
6 |
# - Verified clear() callbacks use only callback + outputs
|
7 |
-
# - Removed `torch_dtype` arg from
|
8 |
-
# -
|
9 |
|
10 |
import gradio as gr
|
11 |
import spaces
|
@@ -25,10 +25,26 @@ from trellis.utils import render_utils, postprocessing_utils
|
|
25 |
import traceback
|
26 |
import sys
|
27 |
|
|
|
28 |
MAX_SEED = np.iinfo(np.int32).max
|
29 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
30 |
os.makedirs(TMP_DIR, exist_ok=True)
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
def start_session(req: gr.Request):
|
34 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
@@ -50,10 +66,9 @@ def end_session(req: gr.Request):
|
|
50 |
|
51 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
52 |
"""Packs Gaussian and Mesh data into a JSON-serializable dictionary."""
|
53 |
-
|
54 |
'gaussian': {
|
55 |
**{k: v for k, v in gs.init_params.items()},
|
56 |
-
# FIX: convert arrays to lists for JSON
|
57 |
'_xyz': gs._xyz.detach().cpu().numpy().tolist(),
|
58 |
'_features_dc': gs._features_dc.detach().cpu().numpy().tolist(),
|
59 |
'_scaling': gs._scaling.detach().cpu().numpy().tolist(),
|
@@ -65,178 +80,128 @@ def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
|
65 |
'faces': mesh.faces.detach().cpu().numpy().tolist(),
|
66 |
},
|
67 |
}
|
68 |
-
return packed_data
|
69 |
|
70 |
|
71 |
def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
|
72 |
-
print("[unpack_state] Unpacking state from dictionary... ")
|
73 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
74 |
-
|
75 |
-
|
76 |
gs = Gaussian(
|
77 |
-
aabb=
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
opacity_bias=gauss_data.get('opacity_bias'),
|
82 |
-
scaling_activation=gauss_data.get('scaling_activation'),
|
83 |
)
|
84 |
-
gs._xyz = torch.tensor(np.array(
|
85 |
-
gs._features_dc = torch.tensor(np.array(
|
86 |
-
gs._scaling = torch.tensor(np.array(
|
87 |
-
gs._rotation = torch.tensor(np.array(
|
88 |
-
gs._opacity = torch.tensor(np.array(
|
89 |
mesh = edict(
|
90 |
-
vertices=torch.tensor(np.array(
|
91 |
-
faces=torch.tensor(np.array(
|
92 |
)
|
93 |
return gs, mesh
|
94 |
|
95 |
|
96 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
97 |
-
|
98 |
-
return int(new_seed)
|
99 |
|
100 |
@spaces.GPU
|
101 |
def text_to_3d(
|
102 |
-
prompt: str,
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
slat_guidance_strength: float,
|
107 |
-
slat_sampling_steps: int,
|
108 |
-
req: gr.Request,
|
109 |
) -> Tuple[dict, str]:
|
110 |
-
|
111 |
-
prompt,
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
slat_sampler_params={"steps": int(slat_sampling_steps), "cfg_strength": float(slat_guidance_strength)},
|
116 |
)
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
os.
|
123 |
-
video_path = os.path.join(user_dir, 'sample.mp4')
|
124 |
-
imageio.mimsave(video_path, video_combined, fps=15, quality=8)
|
125 |
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
126 |
-
return
|
127 |
|
128 |
@spaces.GPU(duration=120)
|
129 |
-
def extract_glb(
|
130 |
-
state_dict: dict,
|
131 |
-
mesh_simplify: float,
|
132 |
-
texture_size: int,
|
133 |
-
req: gr.Request,
|
134 |
-
) -> Tuple[str, str]:
|
135 |
gs, mesh = unpack_state(state_dict)
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
glb_path = os.path.join(user_dir, 'sample.glb')
|
140 |
-
glb.export(glb_path)
|
141 |
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
142 |
-
return
|
143 |
|
144 |
@spaces.GPU
|
145 |
-
def extract_gaussian(
|
146 |
-
state_dict: dict,
|
147 |
-
req: gr.Request
|
148 |
-
) -> Tuple[str, str]:
|
149 |
gs, _ = unpack_state(state_dict)
|
150 |
-
|
151 |
-
os.
|
152 |
-
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
153 |
-
gs.save_ply(gaussian_path)
|
154 |
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
155 |
-
return
|
156 |
|
157 |
-
# --- Gradio UI
|
158 |
-
with gr.Blocks(delete_cache=(600,
|
159 |
gr.Markdown("""
|
160 |
-
# Text to 3D Asset with
|
161 |
""")
|
162 |
-
|
163 |
-
# State buffer
|
164 |
output_buf = gr.State()
|
165 |
-
|
166 |
with gr.Row():
|
167 |
with gr.Column(scale=1):
|
168 |
text_prompt = gr.Textbox(label="Text Prompt", lines=5)
|
169 |
-
with gr.Accordion(
|
170 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
171 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
172 |
-
gr.Markdown("
|
173 |
-
ss_guidance_strength = gr.Slider(0.0,
|
174 |
-
ss_sampling_steps = gr.Slider(10,
|
175 |
-
gr.Markdown("
|
176 |
-
slat_guidance_strength = gr.Slider(0.0,
|
177 |
-
slat_sampling_steps = gr.Slider(10,
|
178 |
-
generate_btn = gr.Button("Generate 3D Preview"
|
179 |
-
with gr.Accordion(
|
180 |
-
mesh_simplify = gr.Slider(0.9,
|
181 |
-
texture_size = gr.Slider(512,
|
182 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
183 |
-
extract_gs_btn = gr.Button("Extract Gaussian
|
184 |
-
download_glb = gr.DownloadButton(
|
185 |
-
download_gs = gr.DownloadButton(
|
186 |
with gr.Column(scale=1):
|
187 |
-
video_output = gr.Video(
|
188 |
-
model_output = gr.Model3D(
|
189 |
|
190 |
-
# ---
|
191 |
-
demo.load(start_session)
|
192 |
-
demo.unload(end_session)
|
193 |
|
194 |
-
# Align indentation to one level under Blocks
|
195 |
generate_event = generate_btn.click(
|
196 |
get_seed,
|
197 |
-
inputs=[randomize_seed, seed]
|
198 |
-
outputs=[seed],
|
199 |
).then(
|
200 |
text_to_3d,
|
201 |
-
inputs=[text_prompt,
|
202 |
-
outputs=[output_buf,
|
203 |
-
).then(
|
204 |
-
lambda: (extract_glb_btn.update(interactive=True), extract_gs_btn.update(interactive=True)),
|
205 |
-
outputs=[extract_glb_btn, extract_gs_btn],
|
206 |
-
)
|
207 |
|
208 |
-
|
209 |
extract_glb,
|
210 |
-
inputs=[output_buf,
|
211 |
-
outputs=[model_output,
|
212 |
-
).then(
|
213 |
-
lambda: download_glb.update(interactive=True),
|
214 |
-
outputs=[download_glb],
|
215 |
-
)
|
216 |
|
217 |
-
|
218 |
extract_gaussian,
|
219 |
-
inputs=[output_buf],
|
220 |
-
|
221 |
-
).then(
|
222 |
-
lambda: download_gaussian.update(interactive=True),
|
223 |
-
outputs=[download_gs],
|
224 |
-
)
|
225 |
|
226 |
-
|
227 |
-
|
228 |
-
lambda: (download_glb.update(interactive=False), download_gs.update(interactive=False)),
|
229 |
-
outputs=[download_glb, download_gs],
|
230 |
-
)
|
231 |
-
video_output.clear(
|
232 |
-
lambda: (extract_glb_btn.update(interactive=False), extract_gs_btn.update(interactive=False), download_glb.update(interactive=False), download_gs.update(interactive=False)),
|
233 |
-
outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs],
|
234 |
-
)
|
235 |
|
236 |
if __name__ == "__main__":
|
237 |
-
# Removed torch_dtype argument to match current API
|
238 |
-
pipeline = TrellisTextTo3DPipeline.from_pretrained(
|
239 |
-
"JeffreyXiang/TRELLIS-text-xlarge"
|
240 |
-
)
|
241 |
-
if torch.cuda.is_available(): pipeline = pipeline.to("cuda")
|
242 |
demo.queue().launch(debug=True)
|
|
|
1 |
+
# Version: 1.1.3 - Load pipeline at module level for Spaces environment
|
2 |
+
# Applied targeted fixes:
|
3 |
# - Removed unsupported inputs/outputs kwargs on demo.load/unload
|
4 |
# - Converted NumPy arrays to lists in pack_state for JSON safety
|
5 |
# - Fixed indentation in Blocks event-handlers
|
6 |
# - Verified clear() callbacks use only callback + outputs
|
7 |
+
# - Removed `torch_dtype` arg from from_pretrained
|
8 |
+
# - Moved pipeline initialization to module level so it's available in threads
|
9 |
|
10 |
import gradio as gr
|
11 |
import spaces
|
|
|
25 |
import traceback
|
26 |
import sys
|
27 |
|
28 |
+
# --- Global Config ---
|
29 |
MAX_SEED = np.iinfo(np.int32).max
|
30 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
31 |
os.makedirs(TMP_DIR, exist_ok=True)
|
32 |
|
33 |
+
# --- Initialize Trellis Pipeline at import time ---
|
34 |
+
print("[Startup] Loading Trellis pipeline...")
|
35 |
+
try:
|
36 |
+
pipeline = TrellisTextTo3DPipeline.from_pretrained(
|
37 |
+
"JeffreyXiang/TRELLIS-text-xlarge"
|
38 |
+
)
|
39 |
+
if torch.cuda.is_available():
|
40 |
+
pipeline = pipeline.to("cuda")
|
41 |
+
print("[Startup] Trellis pipeline loaded to GPU.")
|
42 |
+
else:
|
43 |
+
print("[Startup] Trellis pipeline loaded to CPU.")
|
44 |
+
except Exception as e:
|
45 |
+
print(f"❌ [Startup] Failed to load Trellis pipeline: {e}")
|
46 |
+
raise
|
47 |
+
|
48 |
|
49 |
def start_session(req: gr.Request):
|
50 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
|
66 |
|
67 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
68 |
"""Packs Gaussian and Mesh data into a JSON-serializable dictionary."""
|
69 |
+
return {
|
70 |
'gaussian': {
|
71 |
**{k: v for k, v in gs.init_params.items()},
|
|
|
72 |
'_xyz': gs._xyz.detach().cpu().numpy().tolist(),
|
73 |
'_features_dc': gs._features_dc.detach().cpu().numpy().tolist(),
|
74 |
'_scaling': gs._scaling.detach().cpu().numpy().tolist(),
|
|
|
80 |
'faces': mesh.faces.detach().cpu().numpy().tolist(),
|
81 |
},
|
82 |
}
|
|
|
83 |
|
84 |
|
85 |
def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
|
|
|
86 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
87 |
+
gd = state_dict['gaussian']
|
88 |
+
md = state_dict['mesh']
|
89 |
gs = Gaussian(
|
90 |
+
aabb=gd.get('aabb'), sh_degree=gd.get('sh_degree'),
|
91 |
+
mininum_kernel_size=gd.get('mininum_kernel_size'),
|
92 |
+
scaling_bias=gd.get('scaling_bias'), opacity_bias=gd.get('opacity_bias'),
|
93 |
+
scaling_activation=gd.get('scaling_activation')
|
|
|
|
|
94 |
)
|
95 |
+
gs._xyz = torch.tensor(np.array(gd['_xyz']), device=device, dtype=torch.float32)
|
96 |
+
gs._features_dc = torch.tensor(np.array(gd['_features_dc']), device=device, dtype=torch.float32)
|
97 |
+
gs._scaling = torch.tensor(np.array(gd['_scaling']), device=device, dtype=torch.float32)
|
98 |
+
gs._rotation = torch.tensor(np.array(gd['_rotation']), device=device, dtype=torch.float32)
|
99 |
+
gs._opacity = torch.tensor(np.array(gd['_opacity']), device=device, dtype=torch.float32)
|
100 |
mesh = edict(
|
101 |
+
vertices=torch.tensor(np.array(md['vertices']), device=device, dtype=torch.float32),
|
102 |
+
faces=torch.tensor(np.array(md['faces']), device=device, dtype=torch.int64),
|
103 |
)
|
104 |
return gs, mesh
|
105 |
|
106 |
|
107 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
108 |
+
return int(np.random.randint(0, MAX_SEED) if randomize_seed else seed)
|
|
|
109 |
|
110 |
@spaces.GPU
|
111 |
def text_to_3d(
|
112 |
+
prompt: str, seed: int,
|
113 |
+
ss_guidance_strength: float, ss_sampling_steps: int,
|
114 |
+
slat_guidance_strength: float, slat_sampling_steps: int,
|
115 |
+
req: gr.Request
|
|
|
|
|
|
|
116 |
) -> Tuple[dict, str]:
|
117 |
+
out = pipeline.run(
|
118 |
+
prompt, seed=seed,
|
119 |
+
formats=["gaussian","mesh"],
|
120 |
+
sparse_structure_sampler_params={"steps": ss_sampling_steps, "cfg_strength": ss_guidance_strength},
|
121 |
+
slat_sampler_params={"steps": slat_sampling_steps, "cfg_strength": slat_guidance_strength}
|
|
|
122 |
)
|
123 |
+
state = pack_state(out['gaussian'][0], out['mesh'][0])
|
124 |
+
vid_c = render_utils.render_video(out['gaussian'][0],num_frames=120)['color']
|
125 |
+
vid_n = render_utils.render_video(out['mesh'][0],num_frames=120)['normal']
|
126 |
+
vid = [np.concatenate([c.astype(np.uint8), n.astype(np.uint8)], axis=1) for c,n in zip(vid_c,vid_n)]
|
127 |
+
ud = os.path.join(TMP_DIR,str(req.session_hash)); os.makedirs(ud,exist_ok=True)
|
128 |
+
vp = os.path.join(ud,'sample.mp4'); imageio.mimsave(vp,vid,fps=15,quality=8)
|
|
|
|
|
129 |
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
130 |
+
return state, vp
|
131 |
|
132 |
@spaces.GPU(duration=120)
|
133 |
+
def extract_glb(state_dict: dict, mesh_simplify: float, texture_size: int, req: gr.Request):
|
|
|
|
|
|
|
|
|
|
|
134 |
gs, mesh = unpack_state(state_dict)
|
135 |
+
ud = os.path.join(TMP_DIR, str(req.session_hash)); os.makedirs(ud, exist_ok=True)
|
136 |
+
glb = postprocessing_utils.to_glb(gs,mesh,simplify=mesh_simplify,texture_size=texture_size,verbose=True)
|
137 |
+
gp = os.path.join(ud,'sample.glb'); glb.export(gp)
|
|
|
|
|
138 |
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
139 |
+
return gp, gp
|
140 |
|
141 |
@spaces.GPU
|
142 |
+
def extract_gaussian(state_dict: dict, req: gr.Request):
|
|
|
|
|
|
|
143 |
gs, _ = unpack_state(state_dict)
|
144 |
+
ud = os.path.join(TMP_DIR, str(req.session_hash)); os.makedirs(ud, exist_ok=True)
|
145 |
+
pp = os.path.join(ud,'sample.ply'); gs.save_ply(pp)
|
|
|
|
|
146 |
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
147 |
+
return pp, pp
|
148 |
|
149 |
+
# --- Gradio UI ---
|
150 |
+
with gr.Blocks(delete_cache=(600,600), title="TRELLIS Text-to-3D") as demo:
|
151 |
gr.Markdown("""
|
152 |
+
# Text to 3D Asset with TRELLIS
|
153 |
""")
|
|
|
|
|
154 |
output_buf = gr.State()
|
|
|
155 |
with gr.Row():
|
156 |
with gr.Column(scale=1):
|
157 |
text_prompt = gr.Textbox(label="Text Prompt", lines=5)
|
158 |
+
with gr.Accordion("Generation Settings", open=False):
|
159 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
160 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
161 |
+
gr.Markdown("--- Stage 1 ---")
|
162 |
+
ss_guidance_strength = gr.Slider(0.0,15.0,label="Guidance Strength",value=7.5,step=0.1)
|
163 |
+
ss_sampling_steps = gr.Slider(10,50,label="Steps",value=25,step=1)
|
164 |
+
gr.Markdown("--- Stage 2 ---")
|
165 |
+
slat_guidance_strength = gr.Slider(0.0,15.0,label="Guidance Strength",value=7.5,step=0.1)
|
166 |
+
slat_sampling_steps = gr.Slider(10,50,label="Steps",value=25,step=1)
|
167 |
+
generate_btn = gr.Button("Generate 3D Preview")
|
168 |
+
with gr.Accordion("GLB Extraction Settings", open=True):
|
169 |
+
mesh_simplify = gr.Slider(0.9,0.99,label="Simplify",value=0.95,step=0.01)
|
170 |
+
texture_size = gr.Slider(512,2048,label="Texture Size",value=1024,step=512)
|
171 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
172 |
+
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
173 |
+
download_glb = gr.DownloadButton("Download GLB", interactive=False)
|
174 |
+
download_gs = gr.DownloadButton("Download Gaussian", interactive=False)
|
175 |
with gr.Column(scale=1):
|
176 |
+
video_output = gr.Video(autoplay=True,loop=True)
|
177 |
+
model_output = gr.Model3D()
|
178 |
|
179 |
+
# --- Handlers ---
|
180 |
+
demo.load(start_session)
|
181 |
+
demo.unload(end_session)
|
182 |
|
|
|
183 |
generate_event = generate_btn.click(
|
184 |
get_seed,
|
185 |
+
inputs=[randomize_seed,seed], outputs=[seed]
|
|
|
186 |
).then(
|
187 |
text_to_3d,
|
188 |
+
inputs=[text_prompt,seed,ss_guidance_strength,ss_sampling_steps,slat_guidance_strength,slat_sampling_steps],
|
189 |
+
outputs=[output_buf,video_output]
|
190 |
+
).then(lambda: (extract_glb_btn.update(interactive=True),extract_gs_btn.update(interactive=True)), outputs=[extract_glb_btn,extract_gs_btn])
|
|
|
|
|
|
|
191 |
|
192 |
+
extract_glb_btn.click(
|
193 |
extract_glb,
|
194 |
+
inputs=[output_buf,mesh_simplify,texture_size],
|
195 |
+
outputs=[model_output,download_glb]
|
196 |
+
).then(lambda: download_glb.update(interactive=True), outputs=[download_glb])
|
|
|
|
|
|
|
197 |
|
198 |
+
extract_gs_btn.click(
|
199 |
extract_gaussian,
|
200 |
+
inputs=[output_buf], outputs=[model_output,download_gs]
|
201 |
+
).then(lambda: download_gs.update(interactive=True), outputs=[download_gs])
|
|
|
|
|
|
|
|
|
202 |
|
203 |
+
model_output.clear(lambda: (download_glb.update(interactive=False),download_gs.update(interactive=False)), outputs=[download_glb,download_gs])
|
204 |
+
video_output.clear(lambda: (extract_glb_btn.update(interactive=False),extract_gs_btn.update(interactive=False),download_glb.update(interactive=False),download_gs.update(interactive=False)), outputs=[extract_glb_btn,extract_gs_btn,download_glb,download_gs])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
207 |
demo.queue().launch(debug=True)
|