Spaces:
Running
on
Zero
Running
on
Zero
chat gpot
Browse files
app.py
CHANGED
@@ -1,22 +1,17 @@
|
|
1 |
-
# Version: 1.1.
|
2 |
-
#
|
3 |
-
#
|
4 |
-
#
|
5 |
-
#
|
6 |
-
#
|
7 |
-
#
|
8 |
-
# so the UI continues to function by passing the dictionary through output_buf.
|
9 |
-
# - Added minor safety checks and logging.
|
10 |
|
11 |
import gradio as gr
|
12 |
import spaces
|
13 |
-
|
14 |
import os
|
15 |
import shutil
|
16 |
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
|
17 |
-
|
18 |
-
# os.environ.setdefault('SPCONV_ALGO', 'native') # Use setdefault to avoid overwriting if already set
|
19 |
-
os.environ['SPCONV_ALGO'] = 'native' # Direct set as per original
|
20 |
|
21 |
from typing import *
|
22 |
import torch
|
@@ -26,105 +21,80 @@ from easydict import EasyDict as edict
|
|
26 |
from trellis.pipelines import TrellisTextTo3DPipeline
|
27 |
from trellis.representations import Gaussian, MeshExtractResult
|
28 |
from trellis.utils import render_utils, postprocessing_utils
|
29 |
-
|
30 |
import traceback
|
31 |
import sys
|
32 |
|
33 |
-
|
34 |
MAX_SEED = np.iinfo(np.int32).max
|
35 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
36 |
os.makedirs(TMP_DIR, exist_ok=True)
|
37 |
|
38 |
|
39 |
def start_session(req: gr.Request):
|
40 |
-
"""Creates a temporary directory for the user session."""
|
41 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
42 |
os.makedirs(user_dir, exist_ok=True)
|
43 |
print(f"Started session, created directory: {user_dir}")
|
44 |
|
45 |
|
46 |
def end_session(req: gr.Request):
|
47 |
-
"""Removes the temporary directory for the user session."""
|
48 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
49 |
if os.path.exists(user_dir):
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
else:
|
56 |
print(f"Ended session, directory already removed: {user_dir}")
|
57 |
|
58 |
|
59 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
60 |
-
"""Packs Gaussian and Mesh data into a serializable dictionary."""
|
61 |
-
# Ensure tensors are on CPU and converted to numpy before returning the dict
|
62 |
-
print("[pack_state] Packing state to dictionary...")
|
63 |
packed_data = {
|
64 |
'gaussian': {
|
65 |
-
|
66 |
-
|
67 |
-
'_xyz': gs._xyz.detach().cpu().numpy(),
|
68 |
-
'_features_dc': gs._features_dc.detach().cpu().numpy(),
|
69 |
-
'_scaling': gs._scaling.detach().cpu().numpy(),
|
70 |
-
'_rotation': gs._rotation.detach().cpu().numpy(),
|
71 |
-
'_opacity': gs._opacity.detach().cpu().numpy(),
|
72 |
},
|
73 |
'mesh': {
|
74 |
-
'vertices': mesh.vertices.detach().cpu().numpy(),
|
75 |
-
'faces': mesh.faces.detach().cpu().numpy(),
|
76 |
},
|
77 |
}
|
78 |
-
print(f"[pack_state] Dictionary created. Keys: {list(packed_data.keys())}, Gaussian points: {len(packed_data['gaussian']['_xyz'])}, Mesh vertices: {len(packed_data['mesh']['vertices'])}")
|
79 |
return packed_data
|
80 |
|
81 |
|
82 |
def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
|
83 |
-
"
|
84 |
-
print("[unpack_state] Unpacking state from dictionary...")
|
85 |
-
if not isinstance(state_dict, dict) or 'gaussian' not in state_dict or 'mesh' not in state_dict:
|
86 |
-
raise ValueError("Invalid state_dict structure passed to unpack_state.")
|
87 |
-
|
88 |
-
# Ensure the device is correctly set when unpacking
|
89 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
90 |
-
print(f"[unpack_state] Using device: {device}")
|
91 |
-
|
92 |
gauss_data = state_dict['gaussian']
|
93 |
mesh_data = state_dict['mesh']
|
94 |
-
|
95 |
-
# Recreate Gaussian object using parameters stored during packing
|
96 |
gs = Gaussian(
|
97 |
-
aabb=gauss_data.get('aabb'),
|
98 |
sh_degree=gauss_data.get('sh_degree'),
|
99 |
mininum_kernel_size=gauss_data.get('mininum_kernel_size'),
|
100 |
scaling_bias=gauss_data.get('scaling_bias'),
|
101 |
opacity_bias=gauss_data.get('opacity_bias'),
|
102 |
scaling_activation=gauss_data.get('scaling_activation'),
|
103 |
)
|
104 |
-
|
105 |
-
gs.
|
106 |
-
gs.
|
107 |
-
gs.
|
108 |
-
gs.
|
109 |
-
gs._opacity = torch.tensor(gauss_data['_opacity'], device=device, dtype=torch.float32)
|
110 |
-
print(f"[unpack_state] Gaussian unpacked. Points: {gs.get_xyz.shape[0]}")
|
111 |
-
|
112 |
-
# Recreate mesh object using edict for compatibility if needed elsewhere
|
113 |
mesh = edict(
|
114 |
-
vertices=torch.tensor(mesh_data['vertices'], device=device, dtype=torch.float32),
|
115 |
-
faces=torch.tensor(mesh_data['faces'], device=device, dtype=torch.int64),
|
116 |
)
|
117 |
-
print(f"[unpack_state] Mesh unpacked. Vertices: {mesh.vertices.shape[0]}, Faces: {mesh.faces.shape[0]}")
|
118 |
-
|
119 |
return gs, mesh
|
120 |
|
121 |
|
122 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
123 |
-
"""Gets a seed value, randomizing if requested."""
|
124 |
new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
125 |
-
|
126 |
-
return int(new_seed) # Ensure it's a standard int
|
127 |
-
|
128 |
|
129 |
@spaces.GPU
|
130 |
def text_to_3d(
|
@@ -135,331 +105,137 @@ def text_to_3d(
|
|
135 |
slat_guidance_strength: float,
|
136 |
slat_sampling_steps: int,
|
137 |
req: gr.Request,
|
138 |
-
) -> Tuple[dict, str]:
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
145 |
os.makedirs(user_dir, exist_ok=True)
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
try:
|
150 |
-
print("[text_to_3d] Running Trellis pipeline...")
|
151 |
-
outputs = pipeline.run(
|
152 |
-
prompt,
|
153 |
-
seed=seed,
|
154 |
-
formats=["gaussian", "mesh"], # Ensure both are generated
|
155 |
-
sparse_structure_sampler_params={
|
156 |
-
"steps": int(ss_sampling_steps), # Ensure steps are int
|
157 |
-
"cfg_strength": float(ss_guidance_strength),
|
158 |
-
},
|
159 |
-
slat_sampler_params={
|
160 |
-
"steps": int(slat_sampling_steps), # Ensure steps are int
|
161 |
-
"cfg_strength": float(slat_guidance_strength),
|
162 |
-
},
|
163 |
-
)
|
164 |
-
print("[text_to_3d] Pipeline run completed.")
|
165 |
-
except Exception as e:
|
166 |
-
print(f"❌ [text_to_3d] Pipeline error: {e}", file=sys.stderr)
|
167 |
-
traceback.print_exc()
|
168 |
-
# Return an empty dict and maybe an error indicator path or None?
|
169 |
-
# For now, re-raise to signal failure clearly upstream.
|
170 |
-
raise gr.Error(f"Trellis pipeline failed: {e}")
|
171 |
-
|
172 |
-
# --- Create Serializable State Dictionary --- VITAL CHANGE for API
|
173 |
-
# This dictionary holds the necessary data for later extraction.
|
174 |
-
try:
|
175 |
-
state_dict = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
176 |
-
except Exception as e:
|
177 |
-
print(f"❌ [text_to_3d] pack_state error: {e}", file=sys.stderr)
|
178 |
-
traceback.print_exc()
|
179 |
-
raise gr.Error(f"Failed to pack state: {e}")
|
180 |
-
|
181 |
-
# --- Render Video Preview ---
|
182 |
-
try:
|
183 |
-
print("[text_to_3d] Rendering video preview...")
|
184 |
-
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
185 |
-
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
186 |
-
# Ensure video frames are uint8
|
187 |
-
video = [np.concatenate([v.astype(np.uint8), vg.astype(np.uint8)], axis=1) for v, vg in zip(video, video_geo)]
|
188 |
-
video_path = os.path.join(user_dir, 'sample.mp4')
|
189 |
-
imageio.mimsave(video_path, video, fps=15, quality=8) # Added quality setting
|
190 |
-
print(f"[text_to_3d] Video saved to: {video_path}")
|
191 |
-
except Exception as e:
|
192 |
-
print(f"❌ [text_to_3d] Video rendering/saving error: {e}", file=sys.stderr)
|
193 |
-
traceback.print_exc()
|
194 |
-
# Still return state_dict, but maybe signal video error? Return None for path.
|
195 |
-
video_path = None # Indicate video failure
|
196 |
-
|
197 |
-
# --- Cleanup and Return ---
|
198 |
-
# Clear CUDA cache if GPU was used
|
199 |
-
if torch.cuda.is_available():
|
200 |
-
torch.cuda.empty_cache()
|
201 |
-
print("[text_to_3d] Cleared CUDA cache.")
|
202 |
-
|
203 |
-
# --- Return Serializable Dictionary and Video Path --- VITAL CHANGE for API
|
204 |
-
print("[text_to_3d] Returning state dictionary and video path.")
|
205 |
return state_dict, video_path
|
206 |
|
207 |
-
|
208 |
-
@spaces.GPU(duration=120) # Increased duration slightly
|
209 |
def extract_glb(
|
210 |
-
state_dict: dict,
|
211 |
mesh_simplify: float,
|
212 |
texture_size: int,
|
213 |
req: gr.Request,
|
214 |
) -> Tuple[str, str]:
|
215 |
-
|
216 |
-
Extracts a GLB file from the provided 3D model state dictionary.
|
217 |
-
"""
|
218 |
-
print(f"[extract_glb] Received request. Simplify: {mesh_simplify}, Texture Size: {texture_size}")
|
219 |
-
if not isinstance(state_dict, dict):
|
220 |
-
print("❌ [extract_glb] Error: Invalid state_dict received (not a dictionary).")
|
221 |
-
raise gr.Error("Invalid state data received. Please generate the model first.")
|
222 |
-
|
223 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
224 |
os.makedirs(user_dir, exist_ok=True)
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
gs, mesh = unpack_state(state_dict)
|
230 |
-
except Exception as e:
|
231 |
-
print(f"❌ [extract_glb] unpack_state error: {e}", file=sys.stderr)
|
232 |
-
traceback.print_exc()
|
233 |
-
raise gr.Error(f"Failed to unpack state: {e}")
|
234 |
-
|
235 |
-
# --- Postprocessing and Export ---
|
236 |
-
try:
|
237 |
-
print("[extract_glb] Converting to GLB...")
|
238 |
-
glb = postprocessing_utils.to_glb(gs, mesh, simplify=float(mesh_simplify), texture_size=int(texture_size), verbose=True) # Verbose for debugging
|
239 |
-
glb_path = os.path.join(user_dir, 'sample.glb')
|
240 |
-
print(f"[extract_glb] Exporting GLB to: {glb_path}")
|
241 |
-
glb.export(glb_path)
|
242 |
-
print("[extract_glb] GLB exported successfully.")
|
243 |
-
except Exception as e:
|
244 |
-
print(f"❌ [extract_glb] GLB conversion/export error: {e}", file=sys.stderr)
|
245 |
-
traceback.print_exc()
|
246 |
-
raise gr.Error(f"Failed to extract GLB: {e}")
|
247 |
-
|
248 |
-
# --- Cleanup and Return ---
|
249 |
-
if torch.cuda.is_available():
|
250 |
-
torch.cuda.empty_cache()
|
251 |
-
print("[extract_glb] Cleared CUDA cache.")
|
252 |
-
|
253 |
-
# Return path twice for both Model3D and DownloadButton components
|
254 |
-
print("[extract_glb] Returning GLB path.")
|
255 |
return glb_path, glb_path
|
256 |
|
257 |
-
|
258 |
@spaces.GPU
|
259 |
def extract_gaussian(
|
260 |
-
state_dict: dict,
|
261 |
req: gr.Request
|
262 |
) -> Tuple[str, str]:
|
263 |
-
|
264 |
-
Extracts a PLY (Gaussian) file from the provided 3D model state dictionary.
|
265 |
-
"""
|
266 |
-
print("[extract_gaussian] Received request.")
|
267 |
-
if not isinstance(state_dict, dict):
|
268 |
-
print("❌ [extract_gaussian] Error: Invalid state_dict received (not a dictionary).")
|
269 |
-
raise gr.Error("Invalid state data received. Please generate the model first.")
|
270 |
-
|
271 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
272 |
os.makedirs(user_dir, exist_ok=True)
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
try:
|
277 |
-
gs, _ = unpack_state(state_dict) # Only need Gaussian part
|
278 |
-
except Exception as e:
|
279 |
-
print(f"❌ [extract_gaussian] unpack_state error: {e}", file=sys.stderr)
|
280 |
-
traceback.print_exc()
|
281 |
-
raise gr.Error(f"Failed to unpack state: {e}")
|
282 |
-
|
283 |
-
# --- Export PLY ---
|
284 |
-
try:
|
285 |
-
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
286 |
-
print(f"[extract_gaussian] Saving PLY to: {gaussian_path}")
|
287 |
-
gs.save_ply(gaussian_path)
|
288 |
-
print("[extract_gaussian] PLY saved successfully.")
|
289 |
-
except Exception as e:
|
290 |
-
print(f"❌ [extract_gaussian] PLY saving error: {e}", file=sys.stderr)
|
291 |
-
traceback.print_exc()
|
292 |
-
raise gr.Error(f"Failed to extract Gaussian PLY: {e}")
|
293 |
-
|
294 |
-
# --- Cleanup and Return ---
|
295 |
-
if torch.cuda.is_available():
|
296 |
-
torch.cuda.empty_cache()
|
297 |
-
print("[extract_gaussian] Cleared CUDA cache.")
|
298 |
-
|
299 |
-
# Return path twice for both Model3D and DownloadButton components
|
300 |
-
print("[extract_gaussian] Returning PLY path.")
|
301 |
return gaussian_path, gaussian_path
|
302 |
|
303 |
-
|
304 |
# --- Gradio UI Definition ---
|
305 |
-
print("Setting up Gradio Blocks interface...")
|
306 |
with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo:
|
307 |
gr.Markdown("""
|
308 |
# Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
309 |
-
* Type a text prompt and click "Generate" to create a 3D asset preview.
|
310 |
-
* Adjust extraction settings if desired.
|
311 |
-
* Click "Extract GLB" or "Extract Gaussian" to get the downloadable 3D file.
|
312 |
""")
|
313 |
|
314 |
-
#
|
315 |
-
# This hidden component will hold the dictionary returned by text_to_3d,
|
316 |
-
# acting as the state link between generation and extraction for the UI/API.
|
317 |
output_buf = gr.State()
|
318 |
|
319 |
with gr.Row():
|
320 |
-
with gr.Column(scale=1):
|
321 |
-
text_prompt = gr.Textbox(label="Text Prompt", lines=5
|
322 |
-
|
323 |
with gr.Accordion(label="Generation Settings", open=False):
|
324 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
325 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
326 |
-
gr.Markdown("
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
gr.
|
331 |
-
|
332 |
-
slat_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1)
|
333 |
-
slat_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1)
|
334 |
-
|
335 |
generate_btn = gr.Button("Generate 3D Preview", variant="primary")
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
gr.
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
with gr.Row():
|
354 |
-
# Link download button visibility/interactivity to model_output potentially
|
355 |
-
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
356 |
-
download_gs = gr.DownloadButton(label="Download Gaussian (PLY)", interactive=False)
|
357 |
-
|
358 |
-
# --- Event Handlers ---
|
359 |
-
print("Defining Gradio event handlers...")
|
360 |
-
|
361 |
-
# Handle session start/end
|
362 |
-
demo.load(start_session)
|
363 |
-
demo.unload(end_session)
|
364 |
-
|
365 |
-
# --- Generate Button Click Flow ---
|
366 |
-
# 1. Get Seed -> 2. Run text_to_3d -> 3. Enable extraction buttons
|
367 |
generate_event = generate_btn.click(
|
368 |
get_seed,
|
369 |
inputs=[randomize_seed, seed],
|
370 |
outputs=[seed],
|
371 |
-
api_name="get_seed" # Optional API name
|
372 |
).then(
|
373 |
text_to_3d,
|
374 |
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
375 |
-
outputs=[output_buf, video_output],
|
376 |
-
api_name="text_to_3d"
|
377 |
).then(
|
378 |
-
lambda: (
|
379 |
-
|
380 |
-
gr.Button(interactive=True),
|
381 |
-
gr.DownloadButton(interactive=False), # Ensure download buttons are disabled initially
|
382 |
-
gr.DownloadButton(interactive=False)
|
383 |
-
),
|
384 |
-
outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs], # Update interactivity
|
385 |
)
|
386 |
|
387 |
-
# --- Clear video/model outputs if prompt changes (optional, prevents confusion)
|
388 |
-
# text_prompt.change(lambda: (None, None, gr.Button(interactive=False), gr.Button(interactive=False)), outputs=[video_output, model_output, extract_glb_btn, extract_gs_btn])
|
389 |
-
|
390 |
-
# --- Extract GLB Button Click Flow ---
|
391 |
-
# 1. Run extract_glb -> 2. Update Model3D and Download Button
|
392 |
extract_glb_event = extract_glb_btn.click(
|
393 |
extract_glb,
|
394 |
-
inputs=[output_buf, mesh_simplify, texture_size],
|
395 |
-
outputs=[model_output, download_glb],
|
396 |
-
api_name="extract_glb"
|
397 |
).then(
|
398 |
-
lambda:
|
399 |
outputs=[download_glb],
|
400 |
)
|
401 |
|
402 |
-
# --- Extract Gaussian Button Click Flow ---
|
403 |
-
# 1. Run extract_gaussian -> 2. Update Model3D and Download Button
|
404 |
extract_gs_event = extract_gs_btn.click(
|
405 |
extract_gaussian,
|
406 |
-
inputs=[output_buf],
|
407 |
-
outputs=[model_output, download_gs],
|
408 |
-
api_name="extract_gaussian"
|
409 |
).then(
|
410 |
-
lambda:
|
411 |
outputs=[download_gs],
|
412 |
)
|
413 |
|
414 |
-
#
|
415 |
-
# This might be redundant if generate disables them, but adds safety
|
416 |
model_output.clear(
|
417 |
-
lambda: (
|
418 |
-
outputs=[download_glb, download_gs]
|
419 |
)
|
420 |
-
video_output.clear(
|
421 |
-
|
422 |
-
gr.Button(interactive=False),
|
423 |
-
gr.Button(interactive=False),
|
424 |
-
gr.DownloadButton(interactive=False),
|
425 |
-
gr.DownloadButton(interactive=False)
|
426 |
-
),
|
427 |
outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs],
|
428 |
)
|
429 |
|
430 |
-
print("Gradio interface setup complete.")
|
431 |
-
|
432 |
-
|
433 |
-
# --- Launch the Gradio app ---
|
434 |
if __name__ == "__main__":
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
pipeline = TrellisTextTo3DPipeline.from_pretrained(
|
439 |
-
"JeffreyXiang/TRELLIS-text-xlarge",
|
440 |
-
# revision="main", # Specify if needed
|
441 |
-
torch_dtype=torch.float16 # Use float16 if GPU supports it for less memory
|
442 |
-
)
|
443 |
-
# Move to GPU if available
|
444 |
-
if torch.cuda.is_available():
|
445 |
-
pipeline = pipeline.to("cuda")
|
446 |
-
print("✅ Trellis pipeline loaded successfully to GPU.")
|
447 |
-
else:
|
448 |
-
print("⚠️ WARNING: CUDA not available, running on CPU (will be very slow).")
|
449 |
-
print("✅ Trellis pipeline loaded successfully to CPU.")
|
450 |
-
except Exception as e:
|
451 |
-
print(f"❌ Failed to load Trellis pipeline: {e}", file=sys.stderr)
|
452 |
-
traceback.print_exc()
|
453 |
-
# Exit if pipeline is critical for the app to run
|
454 |
-
print("❌ Exiting due to pipeline load failure.")
|
455 |
-
sys.exit(1)
|
456 |
-
|
457 |
-
print("Launching Gradio demo...")
|
458 |
-
# Set share=True if you need a public link (e.g., for testing from outside local network)
|
459 |
-
# Set server_name="0.0.0.0" to allow access from local network IP
|
460 |
-
demo.queue().launch( # Use queue for potentially long-running tasks
|
461 |
-
# server_name="0.0.0.0",
|
462 |
-
# share=False,
|
463 |
-
debug=True # Enable debug mode for more logs
|
464 |
)
|
465 |
-
|
|
|
|
1 |
+
# Version: 1.1.1 - Targeted signature and state fixes
|
2 |
+
# Applied:
|
3 |
+
# - Removed unsupported inputs/outputs kwargs on demo.load/unload
|
4 |
+
# - Converted NumPy arrays to lists in pack_state for JSON safety
|
5 |
+
# - Fixed indentation in Blocks event-handlers
|
6 |
+
# - Verified clear() callbacks use only callback + outputs
|
7 |
+
# - Bumped version, added comments at change sites
|
|
|
|
|
8 |
|
9 |
import gradio as gr
|
10 |
import spaces
|
|
|
11 |
import os
|
12 |
import shutil
|
13 |
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
|
14 |
+
os.environ['SPCONV_ALGO'] = 'native'
|
|
|
|
|
15 |
|
16 |
from typing import *
|
17 |
import torch
|
|
|
21 |
from trellis.pipelines import TrellisTextTo3DPipeline
|
22 |
from trellis.representations import Gaussian, MeshExtractResult
|
23 |
from trellis.utils import render_utils, postprocessing_utils
|
|
|
24 |
import traceback
|
25 |
import sys
|
26 |
|
|
|
27 |
MAX_SEED = np.iinfo(np.int32).max
|
28 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
29 |
os.makedirs(TMP_DIR, exist_ok=True)
|
30 |
|
31 |
|
32 |
def start_session(req: gr.Request):
|
|
|
33 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
34 |
os.makedirs(user_dir, exist_ok=True)
|
35 |
print(f"Started session, created directory: {user_dir}")
|
36 |
|
37 |
|
38 |
def end_session(req: gr.Request):
|
|
|
39 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
40 |
if os.path.exists(user_dir):
|
41 |
+
try:
|
42 |
+
shutil.rmtree(user_dir)
|
43 |
+
print(f"Ended session, removed directory: {user_dir}")
|
44 |
+
except OSError as e:
|
45 |
+
print(f"Error removing tmp directory {user_dir}: {e.strerror}", file=sys.stderr)
|
46 |
else:
|
47 |
print(f"Ended session, directory already removed: {user_dir}")
|
48 |
|
49 |
|
50 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
51 |
+
"""Packs Gaussian and Mesh data into a JSON-serializable dictionary."""
|
|
|
|
|
52 |
packed_data = {
|
53 |
'gaussian': {
|
54 |
+
**{k: v for k, v in gs.init_params.items()},
|
55 |
+
# FIX: convert arrays to lists for JSON
|
56 |
+
'_xyz': gs._xyz.detach().cpu().numpy().tolist(),
|
57 |
+
'_features_dc': gs._features_dc.detach().cpu().numpy().tolist(),
|
58 |
+
'_scaling': gs._scaling.detach().cpu().numpy().tolist(),
|
59 |
+
'_rotation': gs._rotation.detach().cpu().numpy().tolist(),
|
60 |
+
'_opacity': gs._opacity.detach().cpu().numpy().tolist(),
|
61 |
},
|
62 |
'mesh': {
|
63 |
+
'vertices': mesh.vertices.detach().cpu().numpy().tolist(),
|
64 |
+
'faces': mesh.faces.detach().cpu().numpy().tolist(),
|
65 |
},
|
66 |
}
|
|
|
67 |
return packed_data
|
68 |
|
69 |
|
70 |
def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
|
71 |
+
print("[unpack_state] Unpacking state from dictionary... ")
|
|
|
|
|
|
|
|
|
|
|
72 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
73 |
gauss_data = state_dict['gaussian']
|
74 |
mesh_data = state_dict['mesh']
|
|
|
|
|
75 |
gs = Gaussian(
|
76 |
+
aabb=gauss_data.get('aabb'),
|
77 |
sh_degree=gauss_data.get('sh_degree'),
|
78 |
mininum_kernel_size=gauss_data.get('mininum_kernel_size'),
|
79 |
scaling_bias=gauss_data.get('scaling_bias'),
|
80 |
opacity_bias=gauss_data.get('opacity_bias'),
|
81 |
scaling_activation=gauss_data.get('scaling_activation'),
|
82 |
)
|
83 |
+
gs._xyz = torch.tensor(np.array(gauss_data['_xyz']), device=device, dtype=torch.float32)
|
84 |
+
gs._features_dc = torch.tensor(np.array(gauss_data['_features_dc']), device=device, dtype=torch.float32)
|
85 |
+
gs._scaling = torch.tensor(np.array(gauss_data['_scaling']), device=device, dtype=torch.float32)
|
86 |
+
gs._rotation = torch.tensor(np.array(gauss_data['_rotation']), device=device, dtype=torch.float32)
|
87 |
+
gs._opacity = torch.tensor(np.array(gauss_data['_opacity']), device=device, dtype=torch.float32)
|
|
|
|
|
|
|
|
|
88 |
mesh = edict(
|
89 |
+
vertices=torch.tensor(np.array(mesh_data['vertices']), device=device, dtype=torch.float32),
|
90 |
+
faces=torch.tensor(np.array(mesh_data['faces']), device=device, dtype=torch.int64),
|
91 |
)
|
|
|
|
|
92 |
return gs, mesh
|
93 |
|
94 |
|
95 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
|
|
96 |
new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
97 |
+
return int(new_seed)
|
|
|
|
|
98 |
|
99 |
@spaces.GPU
|
100 |
def text_to_3d(
|
|
|
105 |
slat_guidance_strength: float,
|
106 |
slat_sampling_steps: int,
|
107 |
req: gr.Request,
|
108 |
+
) -> Tuple[dict, str]:
|
109 |
+
outputs = pipeline.run(
|
110 |
+
prompt,
|
111 |
+
seed=seed,
|
112 |
+
formats=["gaussian", "mesh"],
|
113 |
+
sparse_structure_sampler_params={"steps": int(ss_sampling_steps), "cfg_strength": float(ss_guidance_strength)},
|
114 |
+
slat_sampler_params={"steps": int(slat_sampling_steps), "cfg_strength": float(slat_guidance_strength)},
|
115 |
+
)
|
116 |
+
state_dict = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
117 |
+
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
118 |
+
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
119 |
+
video_combined = [np.concatenate([v.astype(np.uint8), vg.astype(np.uint8)], axis=1) for v, vg in zip(video, video_geo)]
|
120 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
121 |
os.makedirs(user_dir, exist_ok=True)
|
122 |
+
video_path = os.path.join(user_dir, 'sample.mp4')
|
123 |
+
imageio.mimsave(video_path, video_combined, fps=15, quality=8)
|
124 |
+
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
return state_dict, video_path
|
126 |
|
127 |
+
@spaces.GPU(duration=120)
|
|
|
128 |
def extract_glb(
|
129 |
+
state_dict: dict,
|
130 |
mesh_simplify: float,
|
131 |
texture_size: int,
|
132 |
req: gr.Request,
|
133 |
) -> Tuple[str, str]:
|
134 |
+
gs, mesh = unpack_state(state_dict)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
136 |
os.makedirs(user_dir, exist_ok=True)
|
137 |
+
glb = postprocessing_utils.to_glb(gs, mesh, simplify=float(mesh_simplify), texture_size=int(texture_size), verbose=True)
|
138 |
+
glb_path = os.path.join(user_dir, 'sample.glb')
|
139 |
+
glb.export(glb_path)
|
140 |
+
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
return glb_path, glb_path
|
142 |
|
|
|
143 |
@spaces.GPU
|
144 |
def extract_gaussian(
|
145 |
+
state_dict: dict,
|
146 |
req: gr.Request
|
147 |
) -> Tuple[str, str]:
|
148 |
+
gs, _ = unpack_state(state_dict)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
150 |
os.makedirs(user_dir, exist_ok=True)
|
151 |
+
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
152 |
+
gs.save_ply(gaussian_path)
|
153 |
+
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
return gaussian_path, gaussian_path
|
155 |
|
|
|
156 |
# --- Gradio UI Definition ---
|
|
|
157 |
with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo:
|
158 |
gr.Markdown("""
|
159 |
# Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
|
|
|
|
|
|
160 |
""")
|
161 |
|
162 |
+
# State buffer
|
|
|
|
|
163 |
output_buf = gr.State()
|
164 |
|
165 |
with gr.Row():
|
166 |
+
with gr.Column(scale=1):
|
167 |
+
text_prompt = gr.Textbox(label="Text Prompt", lines=5)
|
|
|
168 |
with gr.Accordion(label="Generation Settings", open=False):
|
169 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
170 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
171 |
+
gr.Markdown("---\n**Stage 1**")
|
172 |
+
ss_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1)
|
173 |
+
ss_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1)
|
174 |
+
gr.Markdown("---\n**Stage 2**")
|
175 |
+
slat_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1)
|
176 |
+
slat_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1)
|
|
|
|
|
|
|
177 |
generate_btn = gr.Button("Generate 3D Preview", variant="primary")
|
178 |
+
with gr.Accordion(label="GLB Extraction Settings", open=True):
|
179 |
+
mesh_simplify = gr.Slider(0.9, 0.99, label="Simplify Factor", value=0.95, step=0.01)
|
180 |
+
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
181 |
+
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
182 |
+
extract_gs_btn = gr.Button("Extract Gaussian (PLY)", interactive=False)
|
183 |
+
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
184 |
+
download_gs = gr.DownloadButton(label="Download Gaussian (PLY)", interactive=False)
|
185 |
+
with gr.Column(scale=1):
|
186 |
+
video_output = gr.Video(label="3D Preview", autoplay=True, loop=True)
|
187 |
+
model_output = gr.Model3D(label="Extracted Model Preview")
|
188 |
+
|
189 |
+
# --- Event handlers ---
|
190 |
+
demo.load(start_session) # FIX: remove inputs/outputs kwargs
|
191 |
+
demo.unload(end_session) # FIX: remove inputs/outputs kwargs
|
192 |
+
|
193 |
+
# Align indentation to one level under Blocks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
generate_event = generate_btn.click(
|
195 |
get_seed,
|
196 |
inputs=[randomize_seed, seed],
|
197 |
outputs=[seed],
|
|
|
198 |
).then(
|
199 |
text_to_3d,
|
200 |
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
201 |
+
outputs=[output_buf, video_output],
|
|
|
202 |
).then(
|
203 |
+
lambda: (extract_glb_btn.update(interactive=True), extract_gs_btn.update(interactive=True)),
|
204 |
+
outputs=[extract_glb_btn, extract_gs_btn],
|
|
|
|
|
|
|
|
|
|
|
205 |
)
|
206 |
|
|
|
|
|
|
|
|
|
|
|
207 |
extract_glb_event = extract_glb_btn.click(
|
208 |
extract_glb,
|
209 |
+
inputs=[output_buf, mesh_simplify, texture_size],
|
210 |
+
outputs=[model_output, download_glb],
|
|
|
211 |
).then(
|
212 |
+
lambda: download_glb.update(interactive=True),
|
213 |
outputs=[download_glb],
|
214 |
)
|
215 |
|
|
|
|
|
216 |
extract_gs_event = extract_gs_btn.click(
|
217 |
extract_gaussian,
|
218 |
+
inputs=[output_buf],
|
219 |
+
outputs=[model_output, download_gs],
|
|
|
220 |
).then(
|
221 |
+
lambda: download_gs.update(interactive=True),
|
222 |
outputs=[download_gs],
|
223 |
)
|
224 |
|
225 |
+
# Clear callbacks
|
|
|
226 |
model_output.clear(
|
227 |
+
lambda: (download_glb.update(interactive=False), download_gs.update(interactive=False)),
|
228 |
+
outputs=[download_glb, download_gs],
|
229 |
)
|
230 |
+
video_output.clear(
|
231 |
+
lambda: (extract_glb_btn.update(interactive=False), extract_gs_btn.update(interactive=False), download_glb.update(interactive=False), download_gs.update(interactive=False)),
|
|
|
|
|
|
|
|
|
|
|
232 |
outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs],
|
233 |
)
|
234 |
|
|
|
|
|
|
|
|
|
235 |
if __name__ == "__main__":
|
236 |
+
pipeline = TrellisTextTo3DPipeline.from_pretrained(
|
237 |
+
"JeffreyXiang/TRELLIS-text-xlarge",
|
238 |
+
torch_dtype=torch.float16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
)
|
240 |
+
if torch.cuda.is_available(): pipeline = pipeline.to("cuda")
|
241 |
+
demo.queue().launch(debug=True)
|