File size: 15,509 Bytes
9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 6e60611 eafda84 5bc3a57 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 e508568 0b34400 e508568 0b34400 e508568 0b34400 e508568 0b34400 e508568 0b34400 e508568 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 1affb38 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 1affb38 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 1affb38 0b34400 1affb38 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 e508568 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 9bc4638 0b34400 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import copy
import os
from datetime import datetime
import tempfile
import cv2
import matplotlib.pyplot as plt
import numpy as np
import gradio as gr
import torch
from moviepy.editor import ImageSequenceClip
from PIL import Image
from sam2.build_sam import build_sam2_video_predictor
# Remove CUDA environment variables
if 'TORCH_CUDNN_SDPA_ENABLED' in os.environ:
del os.environ["TORCH_CUDNN_SDPA_ENABLED"]
# Description
title = "<center><strong><font size='8'>EdgeTAM CPU<font></strong> <a href='https://github.com/facebookresearch/EdgeTAM'><font size='6'>[GitHub]</font></a> </center>"
description_p = """# Instructions
<ol>
<li> Upload one video or click one example video</li>
<li> Click 'include' point type, select the object to segment and track</li>
<li> Click 'exclude' point type (optional), select the area you want to avoid segmenting and tracking</li>
<li> Click the 'Track' button to obtain the masked video </li>
</ol>
"""
# examples - keeping fewer examples to reduce memory footprint
examples = [
["examples/01_dog.mp4"],
["examples/02_cups.mp4"],
["examples/03_blocks.mp4"],
["examples/04_coffee.mp4"],
["examples/05_default_juggle.mp4"],
]
OBJ_ID = 0
# Initialize model on CPU
sam2_checkpoint = "checkpoints/edgetam.pt"
model_cfg = "edgetam.yaml"
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
print("predictor loaded on CPU")
# Function to get video frame rate
def get_video_fps(video_path):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error: Could not open video.")
return 30.0 # Default fallback value
fps = cap.get(cv2.CAP_PROP_FPS)
cap.release()
return fps
def reset(session_state):
session_state["input_points"] = []
session_state["input_labels"] = []
if session_state["inference_state"] is not None:
predictor.reset_state(session_state["inference_state"])
session_state["first_frame"] = None
session_state["all_frames"] = None
session_state["inference_state"] = None
return (
None,
gr.update(open=True),
None,
None,
gr.update(value=None, visible=False),
session_state,
)
def clear_points(session_state):
session_state["input_points"] = []
session_state["input_labels"] = []
if session_state["inference_state"] is not None and session_state["inference_state"].get("tracking_has_started", False):
predictor.reset_state(session_state["inference_state"])
return (
session_state["first_frame"],
None,
gr.update(value=None, visible=False),
session_state,
)
def preprocess_video_in(video_path, session_state):
if video_path is None:
return (
gr.update(open=True), # video_in_drawer
None, # points_map
None, # output_image
gr.update(value=None, visible=False), # output_video
session_state,
)
# Read the first frame
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error: Could not open video.")
return (
gr.update(open=True), # video_in_drawer
None, # points_map
None, # output_image
gr.update(value=None, visible=False), # output_video
session_state,
)
# For CPU optimization - determine video properties
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Determine if we need to resize for CPU performance
target_width = 640 # Target width for processing on CPU
scale_factor = 1.0
if frame_width > target_width:
scale_factor = target_width / frame_width
frame_width = target_width
frame_height = int(frame_height * scale_factor)
# Read frames - for CPU we'll be more selective about which frames to keep
frame_number = 0
first_frame = None
all_frames = []
# For CPU optimization, skip frames if video is too long
frame_stride = 1
if total_frames > 300: # If more than 300 frames
frame_stride = max(1, int(total_frames / 300)) # Process at most ~300 frames
while True:
ret, frame = cap.read()
if not ret:
break
if frame_number % frame_stride == 0: # Process every frame_stride frames
# Resize the frame if needed
if scale_factor != 1.0:
frame = cv2.resize(frame, (frame_width, frame_height), interpolation=cv2.INTER_AREA)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = np.array(frame)
# Store the first frame
if first_frame is None:
first_frame = frame
all_frames.append(frame)
frame_number += 1
cap.release()
session_state["first_frame"] = copy.deepcopy(first_frame)
session_state["all_frames"] = all_frames
session_state["frame_stride"] = frame_stride
session_state["scale_factor"] = scale_factor
session_state["original_dimensions"] = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
session_state["inference_state"] = predictor.init_state(video_path=video_path)
session_state["input_points"] = []
session_state["input_labels"] = []
return [
gr.update(open=False), # video_in_drawer
first_frame, # points_map
None, # output_image
gr.update(value=None, visible=False), # output_video
session_state,
]
def segment_with_points(
point_type,
session_state,
evt: gr.SelectData,
):
session_state["input_points"].append(evt.index)
print(f"TRACKING INPUT POINT: {session_state['input_points']}")
if point_type == "include":
session_state["input_labels"].append(1)
elif point_type == "exclude":
session_state["input_labels"].append(0)
print(f"TRACKING INPUT LABEL: {session_state['input_labels']}")
# Open the image and get its dimensions
transparent_background = Image.fromarray(session_state["first_frame"]).convert(
"RGBA"
)
w, h = transparent_background.size
# Define the circle radius as a fraction of the smaller dimension
fraction = 0.01 # You can adjust this value as needed
radius = int(fraction * min(w, h))
# Create a transparent layer to draw on
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
for index, track in enumerate(session_state["input_points"]):
if session_state["input_labels"][index] == 1:
cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
else:
cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
# Convert the transparent layer back to an image
transparent_layer = Image.fromarray(transparent_layer, "RGBA")
selected_point_map = Image.alpha_composite(
transparent_background, transparent_layer
)
# Let's add a positive click at (x, y) = (210, 350) to get started
points = np.array(session_state["input_points"], dtype=np.float32)
# for labels, `1` means positive click and `0` means negative click
labels = np.array(session_state["input_labels"], np.int32)
# For CPU optimization, we'll process with smaller batch size
_, _, out_mask_logits = predictor.add_new_points(
inference_state=session_state["inference_state"],
frame_idx=0,
obj_id=OBJ_ID,
points=points,
labels=labels,
)
mask_image = show_mask((out_mask_logits[0] > 0.0).cpu().numpy())
first_frame_output = Image.alpha_composite(transparent_background, mask_image)
return selected_point_map, first_frame_output, session_state
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
cmap = plt.get_cmap("tab10")
cmap_idx = 0 if obj_id is None else obj_id
color = np.array([*cmap(cmap_idx)[:3], 0.6])
h, w = mask.shape[-2:]
mask = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
mask = (mask * 255).astype(np.uint8)
if convert_to_image:
mask = Image.fromarray(mask, "RGBA")
return mask
def propagate_to_all(
video_in,
session_state,
):
if (
len(session_state["input_points"]) == 0
or video_in is None
or session_state["inference_state"] is None
):
return (
None,
session_state,
)
# For CPU optimization: process in smaller batches
chunk_size = 5 # Process 5 frames at a time to avoid memory issues
# run propagation throughout the video and collect the results in a dict
video_segments = {} # video_segments contains the per-frame segmentation results
print("starting propagate_in_video on CPU")
# Get the frames in chunks for CPU memory optimization
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
session_state["inference_state"]
):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
# Free up memory after processing each frame
if len(video_segments) % chunk_size == 0:
torch.cuda.empty_cache() if torch.cuda.is_available() else None
# obtain the segmentation results every few frames
# For CPU optimization: increase stride to reduce processing
vis_frame_stride = max(1, len(video_segments) // 100) # Limit to ~100 frames in output
output_frames = []
for out_frame_idx in range(0, len(video_segments), vis_frame_stride):
transparent_background = Image.fromarray(
session_state["all_frames"][out_frame_idx]
).convert("RGBA")
out_mask = video_segments[out_frame_idx][OBJ_ID]
mask_image = show_mask(out_mask)
output_frame = Image.alpha_composite(transparent_background, mask_image)
output_frame = np.array(output_frame)
output_frames.append(output_frame)
# Create a video clip from the image sequence
original_fps = get_video_fps(video_in)
fps = original_fps # Frames per second
# For CPU optimization - lower FPS if original is high
if fps > 24:
fps = 24
clip = ImageSequenceClip(output_frames, fps=fps)
# Write the result to a file - use lower quality for CPU
unique_id = datetime.now().strftime("%Y%m%d%H%M%S")
final_vid_output_path = f"output_video_{unique_id}.mp4"
final_vid_output_path = os.path.join(tempfile.gettempdir(), final_vid_output_path)
# Lower bitrate for CPU processing
clip.write_videofile(final_vid_output_path, codec="libx264", bitrate="1000k")
return (
gr.update(value=final_vid_output_path),
session_state,
)
def update_ui():
return gr.update(visible=True)
with gr.Blocks() as demo:
session_state = gr.State(
{
"first_frame": None,
"all_frames": None,
"input_points": [],
"input_labels": [],
"inference_state": None,
"frame_stride": 1,
"scale_factor": 1.0,
"original_dimensions": None,
}
)
with gr.Column():
# Title
gr.Markdown(title)
with gr.Row():
with gr.Column():
# Instructions
gr.Markdown(description_p)
with gr.Accordion("Input Video", open=True) as video_in_drawer:
video_in = gr.Video(label="Input Video", format="mp4")
with gr.Row():
point_type = gr.Radio(
label="point type",
choices=["include", "exclude"],
value="include",
scale=2,
)
propagate_btn = gr.Button("Track", scale=1, variant="primary")
clear_points_btn = gr.Button("Clear Points", scale=1)
reset_btn = gr.Button("Reset", scale=1)
points_map = gr.Image(
label="Frame with Point Prompt", type="numpy", interactive=False
)
with gr.Column():
gr.Markdown("# Try some of the examples below ⬇️")
gr.Examples(
examples=examples,
inputs=[
video_in,
],
examples_per_page=5,
)
output_image = gr.Image(label="Reference Mask")
output_video = gr.Video(visible=False)
# When new video is uploaded
video_in.upload(
fn=preprocess_video_in,
inputs=[
video_in,
session_state,
],
outputs=[
video_in_drawer, # Accordion to hide uploaded video player
points_map, # Image component where we add new tracking points
output_image,
output_video,
session_state,
],
queue=False,
)
video_in.change(
fn=preprocess_video_in,
inputs=[
video_in,
session_state,
],
outputs=[
video_in_drawer, # Accordion to hide uploaded video player
points_map, # Image component where we add new tracking points
output_image,
output_video,
session_state,
],
queue=False,
)
# triggered when we click on image to add new points
points_map.select(
fn=segment_with_points,
inputs=[
point_type, # "include" or "exclude"
session_state,
],
outputs=[
points_map, # updated image with points
output_image,
session_state,
],
queue=False,
)
# Clear every points clicked and added to the map
clear_points_btn.click(
fn=clear_points,
inputs=session_state,
outputs=[
points_map,
output_image,
output_video,
session_state,
],
queue=False,
)
reset_btn.click(
fn=reset,
inputs=session_state,
outputs=[
video_in,
video_in_drawer,
points_map,
output_image,
output_video,
session_state,
],
queue=False,
)
propagate_btn.click(
fn=update_ui,
inputs=[],
outputs=output_video,
queue=False,
).then(
fn=propagate_to_all,
inputs=[
video_in,
session_state,
],
outputs=[
output_video,
session_state,
],
queue=True, # Use queue for CPU processing
)
demo.queue()
demo.launch() |