Update app.py
Browse files
app.py
CHANGED
@@ -10,16 +10,16 @@ from datetime import datetime
|
|
10 |
|
11 |
import gradio as gr
|
12 |
|
13 |
-
#
|
14 |
-
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "0,1,2,3,4,5,6,7"
|
|
|
15 |
import tempfile
|
16 |
|
17 |
import cv2
|
18 |
import matplotlib.pyplot as plt
|
19 |
-
# spaces import and decorators are for Hugging Face Spaces GPU allocation,
|
20 |
-
# if running locally without spaces, these can be removed or will be ignored.
|
21 |
-
import spaces
|
22 |
import numpy as np
|
|
|
|
|
23 |
import torch
|
24 |
|
25 |
from moviepy.editor import ImageSequenceClip
|
@@ -38,7 +38,7 @@ description_p = """# Instructions
|
|
38 |
</ol>
|
39 |
"""
|
40 |
|
41 |
-
# examples
|
42 |
examples = [
|
43 |
["examples/01_dog.mp4"],
|
44 |
["examples/02_cups.mp4"],
|
@@ -75,33 +75,30 @@ OBJ_ID = 0
|
|
75 |
|
76 |
sam2_checkpoint = "checkpoints/edgetam.pt"
|
77 |
model_cfg = "edgetam.yaml"
|
78 |
-
#
|
79 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
|
80 |
-
#
|
81 |
-
predictor.to("cuda")
|
82 |
-
print("predictor loaded on
|
83 |
-
|
84 |
-
#
|
85 |
-
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
86 |
-
#
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
elif not torch.cuda.is_available():
|
92 |
-
print("Warning: CUDA not available. The original code is configured for GPU.")
|
93 |
-
# Note: Without a GPU, the .to("cuda") calls will likely cause errors.
|
94 |
|
95 |
|
96 |
def get_video_fps(video_path):
|
97 |
-
|
|
|
|
|
|
|
98 |
cap = cv2.VideoCapture(video_path)
|
99 |
-
|
100 |
if not cap.isOpened():
|
101 |
-
print("Error: Could not open video.")
|
102 |
return None
|
103 |
-
|
104 |
-
# Get the FPS of the video
|
105 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
106 |
cap.release() # Release the capture object
|
107 |
return fps
|
@@ -114,17 +111,15 @@ def reset(session_state):
|
|
114 |
session_state["input_labels"] = []
|
115 |
# Reset the predictor state if it exists
|
116 |
if session_state["inference_state"] is not None:
|
117 |
-
# Assuming predictor.reset_state handles None or invalid states gracefully
|
118 |
-
# Or you might need to explicitly pass the state object if required
|
119 |
try:
|
|
|
120 |
predictor.reset_state(session_state["inference_state"])
|
121 |
# Explicitly delete or re-init the state object if a full reset is intended
|
122 |
-
# This depends on how predictor.reset_state works
|
123 |
-
|
124 |
except Exception as e:
|
125 |
print(f"Error resetting predictor state: {e}")
|
126 |
-
|
127 |
-
session_state["inference_state"] = None
|
128 |
|
129 |
session_state["first_frame"] = None
|
130 |
session_state["all_frames"] = None
|
@@ -132,13 +127,16 @@ def reset(session_state):
|
|
132 |
# Also reset video path if stored
|
133 |
session_state["video_path"] = None
|
134 |
|
135 |
-
# Resetting UI components
|
136 |
return (
|
137 |
None, # video_in (clears the video player)
|
138 |
gr.update(open=True), # video_in_drawer (opens accordion)
|
139 |
None, # points_map (clears the image)
|
140 |
None, # output_image (clears the image)
|
141 |
gr.update(value=None, visible=False), # output_video (hides and clears)
|
|
|
|
|
|
|
142 |
session_state, # return updated session state
|
143 |
)
|
144 |
|
@@ -158,11 +156,20 @@ def clear_points(session_state):
|
|
158 |
print("Predictor state reset for clearing points.")
|
159 |
# If you need to re-initialize the state for the *same* video after clearing points,
|
160 |
# you might need to call predictor.init_state again here, using the stored video_path.
|
161 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
except Exception as e:
|
163 |
print(f"Error resetting predictor state during clear_points: {e}")
|
164 |
-
# If reset fails, this might leave old masks.
|
165 |
-
|
|
|
166 |
|
167 |
# Return the original first frame image for points_map and clear the output_image
|
168 |
first_frame_img = session_state["first_frame"] if session_state["first_frame"] is not None else None
|
@@ -175,8 +182,7 @@ def clear_points(session_state):
|
|
175 |
)
|
176 |
|
177 |
|
178 |
-
#
|
179 |
-
@spaces.GPU
|
180 |
def preprocess_video_in(video_path, session_state):
|
181 |
"""Loads video frames and initializes the predictor state."""
|
182 |
print(f"Processing video: {video_path}")
|
@@ -230,30 +236,30 @@ def preprocess_video_in(video_path, session_state):
|
|
230 |
}
|
231 |
)
|
232 |
|
233 |
-
|
|
|
234 |
session_state["all_frames"] = all_frames
|
235 |
session_state["video_path"] = video_path # Store video path
|
236 |
session_state["input_points"] = []
|
237 |
session_state["input_labels"] = []
|
238 |
-
#
|
239 |
session_state["inference_state"] = predictor.init_state(video_path=video_path)
|
240 |
-
print("Video loaded and predictor state initialized.")
|
241 |
|
242 |
# Enable buttons after successful load
|
243 |
return [
|
244 |
gr.update(open=False), # video_in_drawer
|
245 |
-
first_frame, # points_map
|
246 |
-
None, # output_image
|
247 |
-
gr.update(value=None, visible=False), # output_video
|
248 |
-
gr.update(interactive=True), # propagate_btn
|
249 |
-
gr.update(interactive=True), # clear_points_btn
|
250 |
-
gr.update(interactive=True), # reset_btn
|
251 |
session_state, # session_state
|
252 |
]
|
253 |
|
254 |
|
255 |
-
#
|
256 |
-
@spaces.GPU
|
257 |
def segment_with_points(
|
258 |
point_type,
|
259 |
session_state,
|
@@ -263,7 +269,7 @@ def segment_with_points(
|
|
263 |
# Ensure we have state and first frame
|
264 |
if session_state["first_frame"] is None or session_state["inference_state"] is None:
|
265 |
print("Error: Cannot segment. No video loaded or inference state missing.")
|
266 |
-
# Return current
|
267 |
return (
|
268 |
session_state.get("first_frame"), # points_map (show first frame if exists)
|
269 |
None, # output_image (keep cleared)
|
@@ -310,17 +316,16 @@ def segment_with_points(
|
|
310 |
first_frame_pil.copy(), transparent_layer_points_pil
|
311 |
)
|
312 |
|
313 |
-
# Prepare points and labels as tensors on the correct device (
|
314 |
points = np.array(session_state["input_points"], dtype=np.float32)
|
315 |
labels = np.array(session_state["input_labels"], np.int32)
|
316 |
|
317 |
-
# Ensure tensors are on the correct device (
|
318 |
-
device = next(predictor.parameters()).device # Get the device the model is on
|
319 |
points_tensor = torch.tensor(points, dtype=torch.float32, device=device).unsqueeze(0) # Add batch dim
|
320 |
labels_tensor = torch.tensor(labels, dtype=torch.int32, device=device).unsqueeze(0) # Add batch dim
|
321 |
|
322 |
-
|
323 |
-
# This call performs segmentation on the current frame (frame_idx=0) using all accumulated points
|
324 |
first_frame_output_img = None # Initialize output mask image as None in case of error
|
325 |
try:
|
326 |
# Note: predictor.add_new_points modifies the internal inference_state
|
@@ -349,9 +354,9 @@ def segment_with_points(
|
|
349 |
print(f"Error during segmentation on first frame: {e}")
|
350 |
# On error, first_frame_output_img remains None
|
351 |
|
352 |
-
#
|
353 |
-
if torch.cuda.is_available():
|
354 |
-
|
355 |
|
356 |
return selected_point_map_img, first_frame_output_img, session_state
|
357 |
|
@@ -402,8 +407,7 @@ def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
|
402 |
return colored_mask_uint8
|
403 |
|
404 |
|
405 |
-
#
|
406 |
-
@spaces.GPU
|
407 |
def propagate_to_all(
|
408 |
video_in, # Keep video_in path as in original
|
409 |
session_state,
|
@@ -478,9 +482,9 @@ def propagate_to_all(
|
|
478 |
|
479 |
output_frames.append(output_frame_np)
|
480 |
|
481 |
-
#
|
482 |
-
if torch.cuda.is_available():
|
483 |
-
|
484 |
|
485 |
# Define output path in a temporary directory
|
486 |
unique_id = datetime.now().strftime("%Y%m%d%H%M%S%f") # Use microseconds for more uniqueness
|
@@ -514,10 +518,17 @@ def propagate_to_all(
|
|
514 |
)
|
515 |
|
516 |
# Write the result to a file. Use 'libx264' codec for broad compatibility.
|
|
|
517 |
try:
|
518 |
-
print(f"Writing video file with codec='libx264', fps={fps}")
|
519 |
-
|
520 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
521 |
print("Video writing complete.")
|
522 |
# Return the path and make the video player visible
|
523 |
return (
|
@@ -541,7 +552,7 @@ def propagate_to_all(
|
|
541 |
)
|
542 |
|
543 |
|
544 |
-
def
|
545 |
"""Simply returns a Gradio update to make the output video visible."""
|
546 |
return gr.update(visible=True)
|
547 |
|
@@ -589,7 +600,7 @@ with gr.Blocks() as demo:
|
|
589 |
points_map = gr.Image(
|
590 |
label="Click on the First Frame to Add Points", # Clearer label
|
591 |
type="numpy",
|
592 |
-
interactive=True, # <---
|
593 |
height=400, # Set a fixed height for better UI
|
594 |
width="auto", # Let width adjust
|
595 |
show_share_button=False,
|
@@ -604,8 +615,7 @@ with gr.Blocks() as demo:
|
|
604 |
examples_per_page=8,
|
605 |
cache_examples=False, # Do not cache processed examples, as state is involved
|
606 |
)
|
607 |
-
#
|
608 |
-
# gr.Markdown("<br>")
|
609 |
|
610 |
# output_image shows the segmentation mask prediction on the *first* frame
|
611 |
output_image = gr.Image(
|
@@ -704,14 +714,16 @@ with gr.Blocks() as demo:
|
|
704 |
output_video, # Update output video player with result
|
705 |
session_state, # Update session state
|
706 |
],
|
707 |
-
#
|
708 |
-
|
709 |
-
|
|
|
710 |
)
|
711 |
|
712 |
|
713 |
# Launch the Gradio demo
|
714 |
-
demo.queue() # Enable queuing
|
715 |
print("Gradio demo starting...")
|
|
|
716 |
demo.launch()
|
717 |
print("Gradio demo launched.")
|
|
|
10 |
|
11 |
import gradio as gr
|
12 |
|
13 |
+
# Removed GPU-specific environment variable setting
|
14 |
+
# os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "0,1,2,3,4,5,6,7"
|
15 |
+
|
16 |
import tempfile
|
17 |
|
18 |
import cv2
|
19 |
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
20 |
import numpy as np
|
21 |
+
# Removed spaces decorator import for CPU-only demo
|
22 |
+
# import spaces # Removed spaces import
|
23 |
import torch
|
24 |
|
25 |
from moviepy.editor import ImageSequenceClip
|
|
|
38 |
</ol>
|
39 |
"""
|
40 |
|
41 |
+
# examples - Keep examples, they are input files
|
42 |
examples = [
|
43 |
["examples/01_dog.mp4"],
|
44 |
["examples/02_cups.mp4"],
|
|
|
75 |
|
76 |
sam2_checkpoint = "checkpoints/edgetam.pt"
|
77 |
model_cfg = "edgetam.yaml"
|
78 |
+
# Ensure predictor is explicitly built for CPU
|
79 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
|
80 |
+
# Removed .to("cuda") - predictor is already on CPU from build_sam2_video_predictor
|
81 |
+
# predictor.to("cuda")
|
82 |
+
print("predictor loaded on CPU")
|
83 |
+
|
84 |
+
# Removed CUDA specific autocast and backend settings
|
85 |
+
# torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
86 |
+
# if torch.cuda.is_available() and torch.cuda.get_device_properties(0).major >= 8:
|
87 |
+
# torch.backends.cuda.matmul.allow_tf32 = True
|
88 |
+
# torch.backends.cudnn.allow_tf32 = True
|
89 |
+
# elif not torch.cuda.is_available():
|
90 |
+
# print("Warning: CUDA not available. Running on CPU.")
|
|
|
|
|
|
|
91 |
|
92 |
|
93 |
def get_video_fps(video_path):
|
94 |
+
"""Gets the frames per second of a video file."""
|
95 |
+
if video_path is None or not os.path.exists(video_path):
|
96 |
+
print(f"Warning: Video file not found at {video_path}")
|
97 |
+
return None
|
98 |
cap = cv2.VideoCapture(video_path)
|
|
|
99 |
if not cap.isOpened():
|
100 |
+
print(f"Error: Could not open video file {video_path}.")
|
101 |
return None
|
|
|
|
|
102 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
103 |
cap.release() # Release the capture object
|
104 |
return fps
|
|
|
111 |
session_state["input_labels"] = []
|
112 |
# Reset the predictor state if it exists
|
113 |
if session_state["inference_state"] is not None:
|
|
|
|
|
114 |
try:
|
115 |
+
# Assuming predictor.reset_state handles clearing current masks/features
|
116 |
predictor.reset_state(session_state["inference_state"])
|
117 |
# Explicitly delete or re-init the state object if a full reset is intended
|
118 |
+
# This depends on how predictor.reset_state works. Setting to None is safest for a full reset.
|
119 |
+
session_state["inference_state"] = None
|
120 |
except Exception as e:
|
121 |
print(f"Error resetting predictor state: {e}")
|
122 |
+
session_state["inference_state"] = None # Force-clear on error
|
|
|
123 |
|
124 |
session_state["first_frame"] = None
|
125 |
session_state["all_frames"] = None
|
|
|
127 |
# Also reset video path if stored
|
128 |
session_state["video_path"] = None
|
129 |
|
130 |
+
# Resetting UI components and disabling buttons
|
131 |
return (
|
132 |
None, # video_in (clears the video player)
|
133 |
gr.update(open=True), # video_in_drawer (opens accordion)
|
134 |
None, # points_map (clears the image)
|
135 |
None, # output_image (clears the image)
|
136 |
gr.update(value=None, visible=False), # output_video (hides and clears)
|
137 |
+
gr.update(interactive=False), # propagate_btn disabled
|
138 |
+
gr.update(interactive=False), # clear_points_btn disabled
|
139 |
+
gr.update(interactive=False), # reset_btn disabled
|
140 |
session_state, # return updated session state
|
141 |
)
|
142 |
|
|
|
156 |
print("Predictor state reset for clearing points.")
|
157 |
# If you need to re-initialize the state for the *same* video after clearing points,
|
158 |
# you might need to call predictor.init_state again here, using the stored video_path.
|
159 |
+
# Since we are on CPU, device="cpu" is implicit now.
|
160 |
+
if session_state["video_path"] is not None:
|
161 |
+
session_state["inference_state"] = predictor.init_state(video_path=session_state["video_path"])
|
162 |
+
print("Predictor state re-initialized after clearing points.")
|
163 |
+
else:
|
164 |
+
print("Warning: Could not re-initialize state after clear_points (video_path missing).")
|
165 |
+
session_state["inference_state"] = None # Ensure state is None if video_path is gone
|
166 |
+
|
167 |
+
|
168 |
except Exception as e:
|
169 |
print(f"Error resetting predictor state during clear_points: {e}")
|
170 |
+
# If reset fails, this might leave old masks. Force-clear state on error.
|
171 |
+
session_state["inference_state"] = None
|
172 |
+
|
173 |
|
174 |
# Return the original first frame image for points_map and clear the output_image
|
175 |
first_frame_img = session_state["first_frame"] if session_state["first_frame"] is not None else None
|
|
|
182 |
)
|
183 |
|
184 |
|
185 |
+
# Removed @spaces.GPU decorator
|
|
|
186 |
def preprocess_video_in(video_path, session_state):
|
187 |
"""Loads video frames and initializes the predictor state."""
|
188 |
print(f"Processing video: {video_path}")
|
|
|
236 |
}
|
237 |
)
|
238 |
|
239 |
+
# Update session state with frames and path
|
240 |
+
session_state["first_frame"] = copy.deepcopy(first_frame) # Store a copy
|
241 |
session_state["all_frames"] = all_frames
|
242 |
session_state["video_path"] = video_path # Store video path
|
243 |
session_state["input_points"] = []
|
244 |
session_state["input_labels"] = []
|
245 |
+
# Initialize state WITHOUT the device argument (uses predictor's device, which is CPU)
|
246 |
session_state["inference_state"] = predictor.init_state(video_path=video_path)
|
247 |
+
print("Video loaded and predictor state initialized on CPU.")
|
248 |
|
249 |
# Enable buttons after successful load
|
250 |
return [
|
251 |
gr.update(open=False), # video_in_drawer
|
252 |
+
first_frame, # points_map (shows first frame)
|
253 |
+
None, # output_image (cleared initially)
|
254 |
+
gr.update(value=None, visible=False), # output_video (hidden initially)
|
255 |
+
gr.update(interactive=True), # propagate_btn enabled
|
256 |
+
gr.update(interactive=True), # clear_points_btn enabled
|
257 |
+
gr.update(interactive=True), # reset_btn enabled
|
258 |
session_state, # session_state
|
259 |
]
|
260 |
|
261 |
|
262 |
+
# Removed @spaces.GPU decorator
|
|
|
263 |
def segment_with_points(
|
264 |
point_type,
|
265 |
session_state,
|
|
|
269 |
# Ensure we have state and first frame
|
270 |
if session_state["first_frame"] is None or session_state["inference_state"] is None:
|
271 |
print("Error: Cannot segment. No video loaded or inference state missing.")
|
272 |
+
# Return current states to avoid errors, without changing UI much
|
273 |
return (
|
274 |
session_state.get("first_frame"), # points_map (show first frame if exists)
|
275 |
None, # output_image (keep cleared)
|
|
|
316 |
first_frame_pil.copy(), transparent_layer_points_pil
|
317 |
)
|
318 |
|
319 |
+
# Prepare points and labels as tensors on the correct device (CPU in this version)
|
320 |
points = np.array(session_state["input_points"], dtype=np.float32)
|
321 |
labels = np.array(session_state["input_labels"], np.int32)
|
322 |
|
323 |
+
# Ensure tensors are on the correct device (CPU)
|
324 |
+
device = next(predictor.parameters()).device # Get the device the model is on (should be "cpu")
|
325 |
points_tensor = torch.tensor(points, dtype=torch.float32, device=device).unsqueeze(0) # Add batch dim
|
326 |
labels_tensor = torch.tensor(labels, dtype=torch.int32, device=device).unsqueeze(0) # Add batch dim
|
327 |
|
328 |
+
|
|
|
329 |
first_frame_output_img = None # Initialize output mask image as None in case of error
|
330 |
try:
|
331 |
# Note: predictor.add_new_points modifies the internal inference_state
|
|
|
354 |
print(f"Error during segmentation on first frame: {e}")
|
355 |
# On error, first_frame_output_img remains None
|
356 |
|
357 |
+
# Removed CUDA cache clearing call
|
358 |
+
# if torch.cuda.is_available():
|
359 |
+
# torch.cuda.empty_cache()
|
360 |
|
361 |
return selected_point_map_img, first_frame_output_img, session_state
|
362 |
|
|
|
407 |
return colored_mask_uint8
|
408 |
|
409 |
|
410 |
+
# Removed @spaces.GPU decorator
|
|
|
411 |
def propagate_to_all(
|
412 |
video_in, # Keep video_in path as in original
|
413 |
session_state,
|
|
|
482 |
|
483 |
output_frames.append(output_frame_np)
|
484 |
|
485 |
+
# Removed CUDA cache clearing call
|
486 |
+
# if torch.cuda.is_available():
|
487 |
+
# torch.cuda.empty_cache()
|
488 |
|
489 |
# Define output path in a temporary directory
|
490 |
unique_id = datetime.now().strftime("%Y%m%d%H%M%S%f") # Use microseconds for more uniqueness
|
|
|
518 |
)
|
519 |
|
520 |
# Write the result to a file. Use 'libx264' codec for broad compatibility.
|
521 |
+
# Added CPU optimization parameters for moviepy write
|
522 |
try:
|
523 |
+
print(f"Writing video file with codec='libx264', fps={fps}, preset='medium', threads='auto'")
|
524 |
+
clip.write_videofile(
|
525 |
+
final_vid_output_path,
|
526 |
+
codec="libx264",
|
527 |
+
fps=fps, # Ensure correct FPS is used during writing
|
528 |
+
preset="medium", # CPU optimization: 'fast', 'faster', 'veryfast' are options for speed vs size
|
529 |
+
threads="auto", # CPU optimization: Use multiple cores
|
530 |
+
logger=None # Suppress moviepy output
|
531 |
+
)
|
532 |
print("Video writing complete.")
|
533 |
# Return the path and make the video player visible
|
534 |
return (
|
|
|
552 |
)
|
553 |
|
554 |
|
555 |
+
def update_output_video_visibility():
|
556 |
"""Simply returns a Gradio update to make the output video visible."""
|
557 |
return gr.update(visible=True)
|
558 |
|
|
|
600 |
points_map = gr.Image(
|
601 |
label="Click on the First Frame to Add Points", # Clearer label
|
602 |
type="numpy",
|
603 |
+
interactive=True, # <--- CHANGED TO True to enable clicking
|
604 |
height=400, # Set a fixed height for better UI
|
605 |
width="auto", # Let width adjust
|
606 |
show_share_button=False,
|
|
|
615 |
examples_per_page=8,
|
616 |
cache_examples=False, # Do not cache processed examples, as state is involved
|
617 |
)
|
618 |
+
# Removed extra blank lines
|
|
|
619 |
|
620 |
# output_image shows the segmentation mask prediction on the *first* frame
|
621 |
output_image = gr.Image(
|
|
|
714 |
output_video, # Update output video player with result
|
715 |
session_state, # Update session state
|
716 |
],
|
717 |
+
# CPU Optimization: Limit concurrency to 1 to prevent resource exhaustion.
|
718 |
+
# Queue=True ensures requests wait if another is processing.
|
719 |
+
concurrency_limit=1,
|
720 |
+
queue=True,
|
721 |
)
|
722 |
|
723 |
|
724 |
# Launch the Gradio demo
|
725 |
+
demo.queue() # Enable queuing for sequential processing under concurrency limits
|
726 |
print("Gradio demo starting...")
|
727 |
+
# Removed share=True for local debugging unless you specifically need a public link
|
728 |
demo.launch()
|
729 |
print("Gradio demo launched.")
|