Update app.py
Browse files
app.py
CHANGED
@@ -10,13 +10,16 @@ from datetime import datetime
|
|
10 |
|
11 |
import gradio as gr
|
12 |
|
13 |
-
|
|
|
|
|
14 |
import tempfile
|
15 |
|
16 |
import cv2
|
17 |
import matplotlib.pyplot as plt
|
18 |
import numpy as np
|
19 |
-
import
|
|
|
20 |
import torch
|
21 |
|
22 |
from moviepy.editor import ImageSequenceClip
|
@@ -35,7 +38,7 @@ description_p = """# Instructions
|
|
35 |
</ol>
|
36 |
"""
|
37 |
|
38 |
-
# examples
|
39 |
examples = [
|
40 |
["examples/01_dog.mp4"],
|
41 |
["examples/02_cups.mp4"],
|
@@ -70,90 +73,79 @@ examples = [
|
|
70 |
|
71 |
OBJ_ID = 0
|
72 |
|
73 |
-
|
74 |
sam2_checkpoint = "checkpoints/edgetam.pt"
|
75 |
model_cfg = "edgetam.yaml"
|
|
|
76 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
|
77 |
-
predictor.to("cpu")
|
78 |
-
print("predictor loaded")
|
|
|
|
|
|
|
79 |
|
80 |
-
#
|
81 |
-
|
82 |
-
# if torch.cuda.get_device_properties(0).major >= 8:
|
83 |
-
# # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
|
84 |
-
# torch.backends.cuda.matmul.allow_tf32 = True
|
85 |
-
# torch.backends.cudnn.allow_tf32 = True
|
86 |
|
87 |
|
88 |
def get_video_fps(video_path):
|
89 |
-
|
|
|
|
|
|
|
90 |
cap = cv2.VideoCapture(video_path)
|
91 |
-
|
92 |
if not cap.isOpened():
|
93 |
-
print("Error: Could not open video.")
|
94 |
return None
|
95 |
-
|
96 |
-
# Get the FPS of the video
|
97 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
98 |
-
|
99 |
return fps
|
100 |
|
101 |
-
|
102 |
-
def reset(session_state):
|
103 |
-
session_state["input_points"] = []
|
104 |
-
session_state["input_labels"] = []
|
105 |
-
if session_state["inference_state"] is not None:
|
106 |
-
predictor.reset_state(session_state["inference_state"])
|
107 |
-
session_state["first_frame"] = None
|
108 |
-
session_state["all_frames"] = None
|
109 |
-
session_state["inference_state"] = None
|
110 |
-
return (
|
111 |
-
None,
|
112 |
-
gr.update(open=True),
|
113 |
-
None,
|
114 |
-
None,
|
115 |
-
gr.update(value=None, visible=False),
|
116 |
-
session_state,
|
117 |
-
)
|
118 |
-
|
119 |
-
|
120 |
-
def clear_points(session_state):
|
121 |
-
session_state["input_points"] = []
|
122 |
-
session_state["input_labels"] = []
|
123 |
-
if session_state["inference_state"]["tracking_has_started"]:
|
124 |
-
predictor.reset_state(session_state["inference_state"])
|
125 |
-
return (
|
126 |
-
session_state["first_frame"],
|
127 |
-
None,
|
128 |
-
gr.update(value=None, visible=False),
|
129 |
-
session_state,
|
130 |
-
)
|
131 |
-
|
132 |
-
|
133 |
-
@spaces.GPU
|
134 |
def preprocess_video_in(video_path, session_state):
|
135 |
-
|
|
|
|
|
|
|
|
|
136 |
return (
|
137 |
gr.update(open=True), # video_in_drawer
|
138 |
None, # points_map
|
139 |
None, # output_image
|
140 |
gr.update(value=None, visible=False), # output_video
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
)
|
143 |
|
144 |
-
# Read the first frame
|
145 |
cap = cv2.VideoCapture(video_path)
|
146 |
if not cap.isOpened():
|
147 |
-
print("Error: Could not open video.")
|
|
|
148 |
return (
|
149 |
-
gr.update(open=True),
|
150 |
-
None,
|
151 |
-
None,
|
152 |
-
gr.update(value=None, visible=False),
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
)
|
155 |
|
156 |
-
frame_number = 0
|
157 |
first_frame = None
|
158 |
all_frames = []
|
159 |
|
@@ -161,180 +153,407 @@ def preprocess_video_in(video_path, session_state):
|
|
161 |
ret, frame = cap.read()
|
162 |
if not ret:
|
163 |
break
|
164 |
-
|
165 |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
166 |
-
frame = np.array(frame)
|
167 |
-
|
168 |
-
# Store the first frame
|
169 |
-
if frame_number == 0:
|
170 |
-
first_frame = frame
|
171 |
all_frames.append(frame)
|
172 |
-
|
173 |
-
|
174 |
|
175 |
cap.release()
|
176 |
-
session_state["first_frame"] = copy.deepcopy(first_frame)
|
177 |
-
session_state["all_frames"] = all_frames
|
178 |
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
session_state["input_points"] = []
|
181 |
session_state["input_labels"] = []
|
|
|
|
|
|
|
182 |
|
183 |
return [
|
184 |
gr.update(open=False), # video_in_drawer
|
185 |
-
first_frame, # points_map
|
186 |
-
None, # output_image
|
187 |
-
gr.update(value=None, visible=False), # output_video
|
188 |
-
|
|
|
|
|
|
|
189 |
]
|
190 |
|
191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
def segment_with_points(
|
194 |
point_type,
|
195 |
session_state,
|
196 |
evt: gr.SelectData,
|
197 |
):
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
if point_type == "include":
|
202 |
session_state["input_labels"].append(1)
|
203 |
elif point_type == "exclude":
|
204 |
session_state["input_labels"].append(0)
|
205 |
-
print(f"TRACKING INPUT LABEL: {session_state['input_labels']}")
|
206 |
|
207 |
-
#
|
208 |
-
|
209 |
-
|
210 |
-
)
|
211 |
-
w, h = transparent_background.size
|
212 |
|
213 |
-
# Define the circle radius
|
214 |
-
fraction = 0.01
|
215 |
-
radius = int(fraction * min(w, h))
|
216 |
|
217 |
-
# Create a transparent layer to draw
|
218 |
-
|
219 |
|
|
|
220 |
for index, track in enumerate(session_state["input_points"]):
|
|
|
|
|
221 |
if session_state["input_labels"][index] == 1:
|
222 |
-
|
|
|
223 |
else:
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
|
|
|
|
230 |
)
|
231 |
|
232 |
-
#
|
233 |
points = np.array(session_state["input_points"], dtype=np.float32)
|
234 |
-
# for labels, `1` means positive click and `0` means negative click
|
235 |
labels = np.array(session_state["input_labels"], np.int32)
|
236 |
-
_, _, out_mask_logits = predictor.add_new_points(
|
237 |
-
inference_state=session_state["inference_state"],
|
238 |
-
frame_idx=0,
|
239 |
-
obj_id=OBJ_ID,
|
240 |
-
points=points,
|
241 |
-
labels=labels,
|
242 |
-
)
|
243 |
|
244 |
-
|
245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
|
247 |
-
|
248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
|
251 |
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
if random_color:
|
253 |
-
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
254 |
else:
|
255 |
cmap = plt.get_cmap("tab10")
|
256 |
-
cmap_idx = 0 if obj_id is None else obj_id
|
257 |
-
color = np.array([*cmap(cmap_idx)[:3], 0.6])
|
258 |
-
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
if convert_to_image:
|
262 |
-
|
263 |
-
|
|
|
|
|
264 |
|
265 |
|
266 |
-
@spaces.GPU
|
267 |
def propagate_to_all(
|
268 |
-
video_in,
|
269 |
session_state,
|
270 |
):
|
|
|
|
|
|
|
271 |
if (
|
272 |
-
len(session_state["input_points"]) == 0
|
273 |
-
or
|
274 |
or session_state["inference_state"] is None
|
275 |
):
|
|
|
276 |
return (
|
277 |
-
None,
|
278 |
session_state,
|
279 |
)
|
280 |
|
281 |
-
# run propagation throughout the video and collect the results
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
|
292 |
-
# obtain the segmentation results every few frames
|
293 |
-
vis_frame_stride = 1
|
294 |
|
295 |
output_frames = []
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
|
308 |
# Create a video clip from the image sequence
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
|
|
|
|
|
|
|
|
|
|
316 |
|
317 |
-
#
|
318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
|
325 |
|
326 |
-
def
|
|
|
327 |
return gr.update(visible=True)
|
328 |
|
329 |
|
330 |
with gr.Blocks() as demo:
|
|
|
331 |
session_state = gr.State(
|
332 |
{
|
333 |
-
"first_frame": None,
|
334 |
-
"all_frames": None,
|
335 |
-
"input_points": [],
|
336 |
-
"input_labels": [],
|
337 |
-
"inference_state": None,
|
|
|
338 |
}
|
339 |
)
|
340 |
|
@@ -348,7 +567,7 @@ with gr.Blocks() as demo:
|
|
348 |
gr.Markdown(description_p)
|
349 |
|
350 |
with gr.Accordion("Input Video", open=True) as video_in_drawer:
|
351 |
-
video_in = gr.Video(label="Input Video", format="mp4")
|
352 |
|
353 |
with gr.Row():
|
354 |
point_type = gr.Radio(
|
@@ -356,125 +575,161 @@ with gr.Blocks() as demo:
|
|
356 |
choices=["include", "exclude"],
|
357 |
value="include",
|
358 |
scale=2,
|
|
|
359 |
)
|
360 |
-
|
361 |
-
|
362 |
-
|
|
|
363 |
|
|
|
|
|
364 |
points_map = gr.Image(
|
365 |
-
label="Frame with Point Prompt",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
)
|
367 |
|
368 |
with gr.Column():
|
369 |
gr.Markdown("# Try some of the examples below ⬇️")
|
370 |
gr.Examples(
|
371 |
examples=examples,
|
372 |
-
inputs=[
|
373 |
-
video_in,
|
374 |
-
],
|
375 |
examples_per_page=8,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
376 |
)
|
377 |
-
gr.Markdown("\n\n\n\n\n\n\n\n\n\n\n")
|
378 |
-
gr.Markdown("\n\n\n\n\n\n\n\n\n\n\n")
|
379 |
-
gr.Markdown("\n\n\n\n\n\n\n\n\n\n\n")
|
380 |
-
output_image = gr.Image(label="Reference Mask")
|
381 |
|
382 |
-
output_video
|
|
|
|
|
|
|
|
|
383 |
|
384 |
-
# When new video is uploaded
|
385 |
video_in.upload(
|
386 |
fn=preprocess_video_in,
|
387 |
-
inputs=[
|
388 |
-
video_in,
|
389 |
-
session_state,
|
390 |
-
],
|
391 |
outputs=[
|
392 |
-
video_in_drawer,
|
393 |
-
points_map,
|
394 |
-
output_image,
|
395 |
-
output_video,
|
396 |
-
|
|
|
|
|
|
|
397 |
],
|
398 |
-
queue=False,
|
399 |
)
|
400 |
|
|
|
401 |
video_in.change(
|
402 |
fn=preprocess_video_in,
|
403 |
-
inputs=[
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
session_state,
|
413 |
],
|
414 |
-
queue=False,
|
415 |
)
|
416 |
|
417 |
-
|
|
|
418 |
points_map.select(
|
419 |
fn=segment_with_points,
|
420 |
inputs=[
|
421 |
-
point_type, # "include" or "exclude"
|
422 |
-
session_state,
|
423 |
],
|
424 |
outputs=[
|
425 |
-
points_map,
|
426 |
-
output_image,
|
427 |
-
session_state,
|
428 |
],
|
429 |
-
queue=False,
|
430 |
)
|
431 |
|
432 |
-
#
|
433 |
clear_points_btn.click(
|
434 |
fn=clear_points,
|
435 |
-
inputs=session_state,
|
436 |
outputs=[
|
437 |
-
points_map,
|
438 |
-
output_image,
|
439 |
-
output_video,
|
440 |
-
session_state,
|
441 |
],
|
442 |
-
queue=False,
|
443 |
)
|
444 |
|
|
|
445 |
reset_btn.click(
|
446 |
fn=reset,
|
447 |
-
inputs=session_state,
|
448 |
outputs=[
|
449 |
-
video_in,
|
450 |
-
video_in_drawer,
|
451 |
-
points_map,
|
452 |
-
output_image,
|
453 |
-
output_video,
|
454 |
-
|
|
|
|
|
|
|
455 |
],
|
456 |
-
queue=False,
|
457 |
)
|
458 |
|
|
|
459 |
propagate_btn.click(
|
460 |
-
fn=
|
461 |
inputs=[],
|
462 |
-
outputs=output_video,
|
463 |
-
queue=False,
|
464 |
-
).then(
|
465 |
fn=propagate_to_all,
|
466 |
inputs=[
|
467 |
-
video_in,
|
468 |
-
session_state,
|
469 |
],
|
470 |
outputs=[
|
471 |
-
output_video,
|
472 |
-
session_state,
|
473 |
],
|
474 |
-
|
475 |
-
|
|
|
|
|
476 |
)
|
477 |
|
478 |
|
479 |
-
demo
|
|
|
|
|
480 |
demo.launch()
|
|
|
|
10 |
|
11 |
import gradio as gr
|
12 |
|
13 |
+
# Removed GPU-specific environment variable setting
|
14 |
+
# os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "0,1,2,3,4,5,6,7"
|
15 |
+
|
16 |
import tempfile
|
17 |
|
18 |
import cv2
|
19 |
import matplotlib.pyplot as plt
|
20 |
import numpy as np
|
21 |
+
# Removed spaces decorator import for CPU-only demo
|
22 |
+
# import spaces
|
23 |
import torch
|
24 |
|
25 |
from moviepy.editor import ImageSequenceClip
|
|
|
38 |
</ol>
|
39 |
"""
|
40 |
|
41 |
+
# examples - Keep examples, they are input files
|
42 |
examples = [
|
43 |
["examples/01_dog.mp4"],
|
44 |
["examples/02_cups.mp4"],
|
|
|
73 |
|
74 |
OBJ_ID = 0
|
75 |
|
|
|
76 |
sam2_checkpoint = "checkpoints/edgetam.pt"
|
77 |
model_cfg = "edgetam.yaml"
|
78 |
+
# Ensure predictor is explicitly built for CPU
|
79 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
|
80 |
+
predictor.to("cpu") # Explicitly move to CPU, though device="cpu" should handle it
|
81 |
+
print("predictor loaded on CPU")
|
82 |
+
|
83 |
+
# Removed autocast block for maximum CPU compatibility
|
84 |
+
# torch.autocast(device_type="cpu", dtype=torch.bfloat16).__enter__()
|
85 |
|
86 |
+
# Removed commented-out GPU-specific code
|
87 |
+
# if torch.cuda.get_device_properties(0).major >= 8: ...
|
|
|
|
|
|
|
|
|
88 |
|
89 |
|
90 |
def get_video_fps(video_path):
|
91 |
+
"""Gets the frames per second of a video file."""
|
92 |
+
if video_path is None or not os.path.exists(video_path):
|
93 |
+
print(f"Warning: Video file not found at {video_path}")
|
94 |
+
return None
|
95 |
cap = cv2.VideoCapture(video_path)
|
|
|
96 |
if not cap.isOpened():
|
97 |
+
print(f"Error: Could not open video file {video_path}.")
|
98 |
return None
|
|
|
|
|
99 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
100 |
+
cap.release()
|
101 |
return fps
|
102 |
|
103 |
+
# Removed @spaces.GPU decorator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
def preprocess_video_in(video_path, session_state):
|
105 |
+
"""Loads video frames and initializes the predictor state."""
|
106 |
+
print(f"Processing video: {video_path}")
|
107 |
+
if video_path is None or not os.path.exists(video_path):
|
108 |
+
print("No video path provided or file not found.")
|
109 |
+
# Reset state and UI elements if input is invalid
|
110 |
return (
|
111 |
gr.update(open=True), # video_in_drawer
|
112 |
None, # points_map
|
113 |
None, # output_image
|
114 |
gr.update(value=None, visible=False), # output_video
|
115 |
+
gr.update(interactive=False), # propagate_btn
|
116 |
+
gr.update(interactive=False), # clear_points_btn
|
117 |
+
gr.update(interactive=False), # reset_btn
|
118 |
+
{ # Reset session state
|
119 |
+
"first_frame": None,
|
120 |
+
"all_frames": None,
|
121 |
+
"input_points": [],
|
122 |
+
"input_labels": [],
|
123 |
+
"inference_state": None,
|
124 |
+
}
|
125 |
)
|
126 |
|
127 |
+
# Read the first frame and all frames
|
128 |
cap = cv2.VideoCapture(video_path)
|
129 |
if not cap.isOpened():
|
130 |
+
print(f"Error: Could not open video file {video_path}.")
|
131 |
+
# Reset state and UI elements on error
|
132 |
return (
|
133 |
+
gr.update(open=True),
|
134 |
+
None,
|
135 |
+
None,
|
136 |
+
gr.update(value=None, visible=False),
|
137 |
+
gr.update(interactive=False), # propagate_btn
|
138 |
+
gr.update(interactive=False), # clear_points_btn
|
139 |
+
gr.update(interactive=False), # reset_btn
|
140 |
+
{ # Reset session state
|
141 |
+
"first_frame": None,
|
142 |
+
"all_frames": None,
|
143 |
+
"input_points": [],
|
144 |
+
"input_labels": [],
|
145 |
+
"inference_state": None,
|
146 |
+
}
|
147 |
)
|
148 |
|
|
|
149 |
first_frame = None
|
150 |
all_frames = []
|
151 |
|
|
|
153 |
ret, frame = cap.read()
|
154 |
if not ret:
|
155 |
break
|
156 |
+
# Convert BGR to RGB
|
157 |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
|
|
|
|
|
158 |
all_frames.append(frame)
|
159 |
+
if first_frame is None:
|
160 |
+
first_frame = frame # Store the first frame
|
161 |
|
162 |
cap.release()
|
|
|
|
|
163 |
|
164 |
+
if not all_frames:
|
165 |
+
print(f"Error: No frames read from video file {video_path}.")
|
166 |
+
# Reset state and UI elements if no frames are read
|
167 |
+
return (
|
168 |
+
gr.update(open=True),
|
169 |
+
None,
|
170 |
+
None,
|
171 |
+
gr.update(value=None, visible=False),
|
172 |
+
gr.update(interactive=False), # propagate_btn
|
173 |
+
gr.update(interactive=False), # clear_points_btn
|
174 |
+
gr.update(interactive=False), # reset_btn
|
175 |
+
{ # Reset session state
|
176 |
+
"first_frame": None,
|
177 |
+
"all_frames": None,
|
178 |
+
"input_points": [],
|
179 |
+
"input_labels": [],
|
180 |
+
"inference_state": None,
|
181 |
+
}
|
182 |
+
)
|
183 |
+
|
184 |
+
|
185 |
+
session_state["first_frame"] = copy.deepcopy(first_frame) # Store a copy
|
186 |
+
session_state["all_frames"] = all_frames
|
187 |
session_state["input_points"] = []
|
188 |
session_state["input_labels"] = []
|
189 |
+
# Initialize state explicitly for CPU
|
190 |
+
session_state["inference_state"] = predictor.init_state(video_path=video_path, device="cpu")
|
191 |
+
print("Video loaded and predictor state initialized.")
|
192 |
|
193 |
return [
|
194 |
gr.update(open=False), # video_in_drawer
|
195 |
+
first_frame, # points_map (shows first frame)
|
196 |
+
None, # output_image (cleared initially)
|
197 |
+
gr.update(value=None, visible=False), # output_video (hidden initially)
|
198 |
+
gr.update(interactive=True), # Enable buttons
|
199 |
+
gr.update(interactive=True), # Enable buttons
|
200 |
+
gr.update(interactive=True), # Enable buttons
|
201 |
+
session_state, # Updated state
|
202 |
]
|
203 |
|
204 |
|
205 |
+
def reset(session_state):
|
206 |
+
"""Resets the UI and session state."""
|
207 |
+
print("Resetting demo.")
|
208 |
+
# Clear points and labels
|
209 |
+
session_state["input_points"] = []
|
210 |
+
session_state["input_labels"] = []
|
211 |
+
# Reset the predictor state if it exists
|
212 |
+
if session_state["inference_state"] is not None:
|
213 |
+
predictor.reset_state(session_state["inference_state"])
|
214 |
+
# After reset, we also discard the state object as a new video might be loaded
|
215 |
+
session_state["inference_state"] = None
|
216 |
+
# Clear frames
|
217 |
+
session_state["first_frame"] = None
|
218 |
+
session_state["all_frames"] = None
|
219 |
+
|
220 |
+
# Update UI elements to their initial state
|
221 |
+
return (
|
222 |
+
None, # video_in
|
223 |
+
gr.update(open=True), # video_in_drawer open
|
224 |
+
None, # points_map cleared
|
225 |
+
None, # output_image cleared
|
226 |
+
gr.update(value=None, visible=False), # output_video hidden
|
227 |
+
gr.update(interactive=False), # Disable buttons
|
228 |
+
gr.update(interactive=False), # Disable buttons
|
229 |
+
gr.update(interactive=False), # Disable buttons
|
230 |
+
session_state, # Updated session state
|
231 |
+
)
|
232 |
+
|
233 |
+
|
234 |
+
def clear_points(session_state):
|
235 |
+
"""Clears selected points and resets segmentation on the first frame."""
|
236 |
+
print("Clearing points.")
|
237 |
+
# Clear points and labels lists
|
238 |
+
session_state["input_points"] = []
|
239 |
+
session_state["input_labels"] = []
|
240 |
+
|
241 |
+
# If inference state exists, reset it. This clears internal masks/features
|
242 |
+
# but keeps the video context initialized by preprocess_video_in.
|
243 |
+
if session_state["inference_state"] is not None:
|
244 |
+
predictor.reset_state(session_state["inference_state"])
|
245 |
+
# After resetting the state, we need to re-initialize it to be ready for new points.
|
246 |
+
# Pass the original video path stored in the state.
|
247 |
+
if "video_path" in session_state["inference_state"] and session_state["inference_state"]["video_path"] is not None:
|
248 |
+
session_state["inference_state"] = predictor.init_state(video_path=session_state["inference_state"]["video_path"], device="cpu")
|
249 |
+
else:
|
250 |
+
# This case should ideally not happen if preprocess_video_in ran correctly
|
251 |
+
print("Warning: Could not re-initialize state after clear_points (video_path missing).")
|
252 |
+
session_state["inference_state"] = None
|
253 |
+
|
254 |
|
255 |
+
# Re-render the points_map with no points drawn (just the first frame)
|
256 |
+
# Re-render the output_image with no mask (just the first frame)
|
257 |
+
first_frame_img = session_state["first_frame"] if session_state["first_frame"] is not None else None
|
258 |
+
|
259 |
+
return (
|
260 |
+
first_frame_img, # points_map shows original first frame
|
261 |
+
None, # output_image cleared
|
262 |
+
gr.update(value=None, visible=False), # Hide output video
|
263 |
+
session_state, # Updated session state
|
264 |
+
)
|
265 |
+
|
266 |
+
|
267 |
+
# Removed @spaces.GPU decorator
|
268 |
def segment_with_points(
|
269 |
point_type,
|
270 |
session_state,
|
271 |
evt: gr.SelectData,
|
272 |
):
|
273 |
+
"""Adds a point prompt and performs segmentation on the first frame."""
|
274 |
+
# Ensure we have a valid first frame and inference state
|
275 |
+
if session_state["first_frame"] is None or session_state["inference_state"] is None:
|
276 |
+
print("Error: Cannot segment. No video loaded or inference state missing.")
|
277 |
+
return (
|
278 |
+
session_state["first_frame"], # points_map remains unchanged
|
279 |
+
None, # output_image remains unchanged or cleared
|
280 |
+
session_state,
|
281 |
+
)
|
282 |
+
|
283 |
+
# evt.index gives the (x, y) coordinates of the click
|
284 |
+
click_coords = evt.index
|
285 |
+
print(f"Clicked at: {click_coords} ({point_type})")
|
286 |
+
|
287 |
+
session_state["input_points"].append(click_coords)
|
288 |
|
289 |
if point_type == "include":
|
290 |
session_state["input_labels"].append(1)
|
291 |
elif point_type == "exclude":
|
292 |
session_state["input_labels"].append(0)
|
|
|
293 |
|
294 |
+
# Get the first frame as a PIL image for drawing
|
295 |
+
first_frame_pil = Image.fromarray(session_state["first_frame"]).convert("RGBA")
|
296 |
+
w, h = first_frame_pil.size
|
|
|
|
|
297 |
|
298 |
+
# Define the circle radius
|
299 |
+
fraction = 0.01
|
300 |
+
radius = max(2, int(fraction * min(w, h))) # Ensure minimum radius of 2
|
301 |
|
302 |
+
# Create a transparent layer to draw points
|
303 |
+
transparent_layer_points = np.zeros((h, w, 4), dtype=np.uint8)
|
304 |
|
305 |
+
# Draw points on the transparent layer
|
306 |
for index, track in enumerate(session_state["input_points"]):
|
307 |
+
# Ensure coordinates are integers for cv2.circle
|
308 |
+
point_coords = (int(track[0]), int(track[1]))
|
309 |
if session_state["input_labels"][index] == 1:
|
310 |
+
# Green circle for include
|
311 |
+
cv2.circle(transparent_layer_points, point_coords, radius, (0, 255, 0, 255), -1)
|
312 |
else:
|
313 |
+
# Red circle for exclude
|
314 |
+
cv2.circle(transparent_layer_points, point_coords, radius, (255, 0, 0, 255), -1)
|
315 |
+
|
316 |
+
# Convert the transparent layer back to an image and composite onto the first frame
|
317 |
+
transparent_layer_points_pil = Image.fromarray(transparent_layer_points, "RGBA")
|
318 |
+
# Combine the first frame image with the points layer for the points_map output
|
319 |
+
selected_point_map_img = Image.alpha_composite(
|
320 |
+
first_frame_pil.copy(), transparent_layer_points_pil
|
321 |
)
|
322 |
|
323 |
+
# Prepare points and labels as tensors on CPU for the predictor
|
324 |
points = np.array(session_state["input_points"], dtype=np.float32)
|
|
|
325 |
labels = np.array(session_state["input_labels"], np.int32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
|
327 |
+
points_tensor = torch.tensor(points, dtype=torch.float32, device="cpu").unsqueeze(0) # Add batch dim
|
328 |
+
labels_tensor = torch.tensor(labels, dtype=torch.int32, device="cpu").unsqueeze(0) # Add batch dim
|
329 |
+
|
330 |
+
# Add new points to the predictor's state and get the mask for the first frame
|
331 |
+
# This call performs segmentation on the current frame (frame_idx=0) using all accumulated points
|
332 |
+
try:
|
333 |
+
_, _, out_mask_logits = predictor.add_new_points(
|
334 |
+
inference_state=session_state["inference_state"],
|
335 |
+
frame_idx=0, # Always segment on the first frame initially
|
336 |
+
obj_id=OBJ_ID,
|
337 |
+
points=points_tensor,
|
338 |
+
labels=labels_tensor,
|
339 |
+
)
|
340 |
|
341 |
+
# Process logits: detach from graph, move to CPU, apply threshold
|
342 |
+
# out_mask_logits is [batch_size, H, W] (batch_size=1 here)
|
343 |
+
mask_tensor = (out_mask_logits[0][0].detach().cpu() > 0.0) # Apply threshold and get the single mask tensor [H, W]
|
344 |
+
mask_numpy = mask_tensor.numpy() # Convert to numpy
|
345 |
+
|
346 |
+
# Get the mask image (RGBA)
|
347 |
+
mask_image_pil = show_mask(mask_numpy, obj_id=OBJ_ID) # show_mask returns RGBA PIL Image
|
348 |
+
|
349 |
+
# Composite the mask onto the first frame for the output_image
|
350 |
+
first_frame_output_img = Image.alpha_composite(first_frame_pil.copy(), mask_image_pil)
|
351 |
+
|
352 |
+
except Exception as e:
|
353 |
+
print(f"Error during segmentation on first frame: {e}")
|
354 |
+
# On error, return the points_map but clear the output_image
|
355 |
+
first_frame_output_img = None
|
356 |
+
|
357 |
+
|
358 |
+
return selected_point_map_img, first_frame_output_img, session_state
|
359 |
|
360 |
|
361 |
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
362 |
+
"""Helper function to visualize a mask."""
|
363 |
+
# Ensure mask is a numpy array (and boolean)
|
364 |
+
if isinstance(mask, torch.Tensor):
|
365 |
+
mask = mask.detach().cpu().numpy() # Ensure it's on CPU and converted to numpy
|
366 |
+
mask = mask.astype(bool) # Ensure mask is boolean
|
367 |
+
|
368 |
if random_color:
|
369 |
+
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) # RGBA with 0.6 alpha
|
370 |
else:
|
371 |
cmap = plt.get_cmap("tab10")
|
372 |
+
cmap_idx = 0 if obj_id is None else obj_id % 10 # Use modulo 10 for tab10 colors
|
373 |
+
color = np.array([*cmap(cmap_idx)[:3], 0.6]) # RGBA with 0.6 alpha
|
374 |
+
|
375 |
+
# Ensure mask has H, W dimensions
|
376 |
+
if mask.ndim == 3:
|
377 |
+
mask = mask.squeeze() # Remove singular dimensions
|
378 |
+
if mask.ndim != 2:
|
379 |
+
print(f"Warning: show_mask received mask with shape {mask.shape}. Expected 2D.")
|
380 |
+
# Create an empty transparent image if mask shape is unexpected
|
381 |
+
if convert_to_image:
|
382 |
+
return Image.fromarray(np.zeros((*mask.shape[:2], 4), dtype=np.uint8), "RGBA")
|
383 |
+
else:
|
384 |
+
return np.zeros((*mask.shape[:2], 4), dtype=np.uint8)
|
385 |
+
|
386 |
+
|
387 |
+
h, w = mask.shape
|
388 |
+
# Create an RGBA image from the mask and color
|
389 |
+
# Apply color where mask is True
|
390 |
+
# Need to reshape color to be broadcastable [1, 1, 4]
|
391 |
+
colored_mask = np.zeros((h, w, 4), dtype=np.float32) # Start with fully transparent black
|
392 |
+
colored_mask[mask] = color # Apply color where mask is True
|
393 |
+
|
394 |
+
# Convert to uint8 [0-255]
|
395 |
+
colored_mask_uint8 = (colored_mask * 255).astype(np.uint8)
|
396 |
+
|
397 |
if convert_to_image:
|
398 |
+
mask_img = Image.fromarray(colored_mask_uint8, "RGBA")
|
399 |
+
return mask_img
|
400 |
+
else:
|
401 |
+
return colored_mask_uint8
|
402 |
|
403 |
|
404 |
+
# Removed @spaces.GPU decorator
|
405 |
def propagate_to_all(
|
406 |
+
video_in, # Keep video_in path to potentially get FPS again if needed
|
407 |
session_state,
|
408 |
):
|
409 |
+
"""Runs mask propagation through the video and generates the output video."""
|
410 |
+
print("Starting propagation...")
|
411 |
+
# Ensure state is ready
|
412 |
if (
|
413 |
+
len(session_state["input_points"]) == 0 # Need at least one point
|
414 |
+
or session_state["all_frames"] is None
|
415 |
or session_state["inference_state"] is None
|
416 |
):
|
417 |
+
print("Error: Cannot propagate. No points selected, video not loaded, or inference state missing.")
|
418 |
return (
|
419 |
+
gr.update(value=None, visible=False), # Hide output video on error
|
420 |
session_state,
|
421 |
)
|
422 |
|
423 |
+
# run propagation throughout the video and collect the results
|
424 |
+
# The generator yields (frame_idx, obj_ids, mask_logits)
|
425 |
+
video_segments = {}
|
426 |
+
try:
|
427 |
+
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
|
428 |
+
session_state["inference_state"]
|
429 |
+
):
|
430 |
+
# Process logits: detach from graph, move to CPU, convert to numpy boolean mask
|
431 |
+
# Ensure tensor is on CPU before converting to numpy
|
432 |
+
video_segments[out_frame_idx] = {
|
433 |
+
out_obj_id: (out_mask_logits[i].detach().cpu() > 0.0).numpy()
|
434 |
+
for i, out_obj_id in enumerate(out_obj_ids)
|
435 |
+
}
|
436 |
+
# Optional: print progress
|
437 |
+
# print(f"Processed frame {out_frame_idx+1}/{len(session_state['all_frames'])}")
|
438 |
+
|
439 |
+
print("Propagation finished.")
|
440 |
+
except Exception as e:
|
441 |
+
print(f"Error during propagation: {e}")
|
442 |
+
return (
|
443 |
+
gr.update(value=None, visible=False), # Hide output video on error
|
444 |
+
session_state,
|
445 |
+
)
|
446 |
|
|
|
|
|
447 |
|
448 |
output_frames = []
|
449 |
+
# Iterate through all original frames to generate output video
|
450 |
+
for out_frame_idx in range(len(session_state["all_frames"])):
|
451 |
+
original_frame_rgb = session_state["all_frames"][out_frame_idx]
|
452 |
+
# Convert original frame to RGBA for compositing
|
453 |
+
transparent_background = Image.fromarray(original_frame_rgb).convert("RGBA")
|
454 |
+
|
455 |
+
# Check if we have a mask for this frame and object ID
|
456 |
+
if out_frame_idx in video_segments and OBJ_ID in video_segments[out_frame_idx]:
|
457 |
+
current_mask_numpy = video_segments[out_frame_idx][OBJ_ID]
|
458 |
+
# Get the mask image (RGBA)
|
459 |
+
mask_image_pil = show_mask(current_mask_numpy, obj_id=OBJ_ID)
|
460 |
+
# Composite the mask onto the frame
|
461 |
+
output_frame_img_rgba = Image.alpha_composite(transparent_background, mask_image_pil)
|
462 |
+
# Convert back to numpy RGB (moviepy needs RGB or RGBA)
|
463 |
+
output_frame_np = np.array(output_frame_img_rgba.convert("RGB"))
|
464 |
+
else:
|
465 |
+
# If no mask for this frame/object, just use the original frame (converted to RGB)
|
466 |
+
# Note: all_frames are already RGB numpy arrays, so just use them directly.
|
467 |
+
# print(f"Warning: No mask found for frame {out_frame_idx} and object {OBJ_ID}. Using original frame.")
|
468 |
+
output_frame_np = original_frame_rgb # Already RGB numpy array
|
469 |
+
|
470 |
+
output_frames.append(output_frame_np)
|
471 |
+
|
472 |
+
|
473 |
+
# Define output path in a temporary directory
|
474 |
+
unique_id = datetime.now().strftime("%Y%m%d%H%M%S%f") # Use microseconds for more uniqueness
|
475 |
+
final_vid_filename = f"output_video_{unique_id}.mp4"
|
476 |
+
# Use os.path.join for cross-platform compatibility
|
477 |
+
final_vid_output_path = os.path.join(tempfile.gettempdir(), final_vid_filename)
|
478 |
+
print(f"Output video path: {final_vid_output_path}")
|
479 |
+
|
480 |
|
481 |
# Create a video clip from the image sequence
|
482 |
+
# Get original FPS or default
|
483 |
+
original_fps = get_video_fps(video_in) # Re-get FPS from the input file path
|
484 |
+
fps = original_fps if original_fps is not None and original_fps > 0 else 30 # Default to 30 if detection fails or is zero
|
485 |
+
print(f"Creating output video with FPS: {fps}")
|
486 |
+
|
487 |
+
# Check if there are frames to process
|
488 |
+
if not output_frames:
|
489 |
+
print("No output frames generated.")
|
490 |
+
return (
|
491 |
+
gr.update(value=None, visible=False), # Hide output video
|
492 |
+
session_state,
|
493 |
+
)
|
494 |
|
495 |
+
# Create ImageSequenceClip from the list of numpy arrays
|
496 |
+
try:
|
497 |
+
clip = ImageSequenceClip(output_frames, fps=fps)
|
498 |
+
except Exception as e:
|
499 |
+
print(f"Error creating ImageSequenceClip: {e}")
|
500 |
+
return (
|
501 |
+
gr.update(value=None, visible=False), # Hide output video on error
|
502 |
+
session_state,
|
503 |
+
)
|
504 |
|
505 |
+
|
506 |
+
# Write the result to a file. Use 'libx264' codec for broad compatibility.
|
507 |
+
# `preset` and `threads` for CPU optimization.
|
508 |
+
# `logger=None` prevents moviepy from printing progress to stdout/stderr, which can clutter the Gradio logs.
|
509 |
+
try:
|
510 |
+
print(f"Writing video file with codec='libx264', fps={fps}, preset='medium', threads='auto'")
|
511 |
+
clip.write_videofile(
|
512 |
+
final_vid_output_path,
|
513 |
+
codec="libx264",
|
514 |
+
fps=fps, # Ensure correct FPS is used during writing
|
515 |
+
preset="medium", # CPU optimization: 'fast', 'faster', 'veryfast' are options for speed
|
516 |
+
threads="auto", # CPU optimization: Use multiple cores
|
517 |
+
logger=None # Suppress moviepy output
|
518 |
+
)
|
519 |
+
print("Video writing complete.")
|
520 |
+
# Return the path and make the video player visible
|
521 |
+
return (
|
522 |
+
gr.update(value=final_vid_output_path, visible=True),
|
523 |
+
session_state,
|
524 |
+
)
|
525 |
+
except Exception as e:
|
526 |
+
print(f"Error writing video file: {e}")
|
527 |
+
# Clean up potentially created partial file
|
528 |
+
if os.path.exists(final_vid_output_path):
|
529 |
+
try:
|
530 |
+
os.remove(final_vid_output_path)
|
531 |
+
print(f"Removed partial video file: {final_vid_output_path}")
|
532 |
+
except Exception as clean_e:
|
533 |
+
print(f"Error removing partial file: {clean_e}")
|
534 |
+
|
535 |
+
# Return None if writing fails
|
536 |
+
return (
|
537 |
+
gr.update(value=None, visible=False),
|
538 |
+
session_state,
|
539 |
+
)
|
540 |
|
541 |
|
542 |
+
def update_output_video_visibility():
|
543 |
+
"""Simply returns a Gradio update to make the output video visible."""
|
544 |
return gr.update(visible=True)
|
545 |
|
546 |
|
547 |
with gr.Blocks() as demo:
|
548 |
+
# Session state dictionary to hold video frames, points, labels, and predictor state
|
549 |
session_state = gr.State(
|
550 |
{
|
551 |
+
"first_frame": None, # numpy array (RGB)
|
552 |
+
"all_frames": None, # list of numpy arrays (RGB)
|
553 |
+
"input_points": [], # list of (x, y) tuples/lists
|
554 |
+
"input_labels": [], # list of 1s and 0s
|
555 |
+
"inference_state": None, # EdgeTAM predictor state object
|
556 |
+
"video_path": None, # Store the input video path
|
557 |
}
|
558 |
)
|
559 |
|
|
|
567 |
gr.Markdown(description_p)
|
568 |
|
569 |
with gr.Accordion("Input Video", open=True) as video_in_drawer:
|
570 |
+
video_in = gr.Video(label="Input Video", format="mp4") # Will hold the video file path
|
571 |
|
572 |
with gr.Row():
|
573 |
point_type = gr.Radio(
|
|
|
575 |
choices=["include", "exclude"],
|
576 |
value="include",
|
577 |
scale=2,
|
578 |
+
interactive=True, # Make interactive
|
579 |
)
|
580 |
+
# Buttons are initially disabled until a video is loaded
|
581 |
+
propagate_btn = gr.Button("Track", scale=1, variant="primary", interactive=False)
|
582 |
+
clear_points_btn = gr.Button("Clear Points", scale=1, interactive=False)
|
583 |
+
reset_btn = gr.Button("Reset", scale=1, interactive=False)
|
584 |
|
585 |
+
# points_map is where users click to add points. Needs to be interactive.
|
586 |
+
# Shows the first frame with points drawn on it.
|
587 |
points_map = gr.Image(
|
588 |
+
label="Frame with Point Prompt",
|
589 |
+
type="numpy",
|
590 |
+
interactive=True, # Make interactive to capture clicks
|
591 |
+
height=400, # Set a fixed height for better UI
|
592 |
+
width="auto", # Let width adjust
|
593 |
+
show_share_button=False,
|
594 |
+
show_download_button=False,
|
595 |
+
# show_label=False # Can hide label if space is tight
|
596 |
)
|
597 |
|
598 |
with gr.Column():
|
599 |
gr.Markdown("# Try some of the examples below ⬇️")
|
600 |
gr.Examples(
|
601 |
examples=examples,
|
602 |
+
inputs=[video_in],
|
|
|
|
|
603 |
examples_per_page=8,
|
604 |
+
cache_examples=False, # Do not cache processed examples, as state is involved
|
605 |
+
)
|
606 |
+
# Add padding/space
|
607 |
+
# gr.Markdown("<br>")
|
608 |
+
|
609 |
+
# output_image shows the segmentation mask prediction on the *first* frame
|
610 |
+
output_image = gr.Image(
|
611 |
+
label="Reference Mask (First Frame)",
|
612 |
+
type="numpy",
|
613 |
+
interactive=False, # Not interactive, just displays the mask
|
614 |
+
height=400, # Match height of points_map
|
615 |
+
width="auto", # Let width adjust
|
616 |
+
show_share_button=False,
|
617 |
+
show_download_button=False,
|
618 |
+
# show_label=False # Can hide label
|
619 |
)
|
|
|
|
|
|
|
|
|
620 |
|
621 |
+
# output_video shows the final tracking result
|
622 |
+
output_video = gr.Video(visible=False, label="Tracking Result")
|
623 |
+
|
624 |
+
|
625 |
+
# --- Event Handlers ---
|
626 |
|
627 |
+
# When a new video file is uploaded via the file browser
|
628 |
video_in.upload(
|
629 |
fn=preprocess_video_in,
|
630 |
+
inputs=[video_in, session_state],
|
|
|
|
|
|
|
631 |
outputs=[
|
632 |
+
video_in_drawer, # Close accordion
|
633 |
+
points_map, # Show first frame in points_map
|
634 |
+
output_image, # Clear output image
|
635 |
+
output_video, # Hide output video
|
636 |
+
propagate_btn, # Enable Track button
|
637 |
+
clear_points_btn,# Enable Clear Points button
|
638 |
+
reset_btn, # Enable Reset button
|
639 |
+
session_state, # Update session state
|
640 |
],
|
641 |
+
queue=False, # Process immediately
|
642 |
)
|
643 |
|
644 |
+
# When an example video is selected (change event)
|
645 |
video_in.change(
|
646 |
fn=preprocess_video_in,
|
647 |
+
inputs=[video_in, session_state],
|
648 |
+
outputs=[
|
649 |
+
video_in_drawer, # Close accordion
|
650 |
+
points_map, # Show first frame in points_map
|
651 |
+
output_image, # Clear output image
|
652 |
+
output_video, # Hide output video
|
653 |
+
propagate_btn, # Enable Track button
|
654 |
+
clear_points_btn,# Enable Clear Points button
|
655 |
+
reset_btn, # Enable Reset button
|
656 |
+
session_state, # Update session state
|
657 |
],
|
658 |
+
queue=False, # Process immediately
|
659 |
)
|
660 |
|
661 |
+
|
662 |
+
# Triggered when a user clicks on the points_map image
|
663 |
points_map.select(
|
664 |
fn=segment_with_points,
|
665 |
inputs=[
|
666 |
+
point_type, # "include" or "exclude" radio button value
|
667 |
+
session_state, # Pass session state
|
668 |
],
|
669 |
outputs=[
|
670 |
+
points_map, # Updated image with points drawn
|
671 |
+
output_image, # Updated image with first frame segmentation mask
|
672 |
+
session_state, # Updated session state (points/labels added)
|
673 |
],
|
674 |
+
queue=False, # Process clicks immediately
|
675 |
)
|
676 |
|
677 |
+
# Button to clear all selected points and reset the first frame mask
|
678 |
clear_points_btn.click(
|
679 |
fn=clear_points,
|
680 |
+
inputs=[session_state], # Pass session state
|
681 |
outputs=[
|
682 |
+
points_map, # points_map shows original first frame without points
|
683 |
+
output_image, # output_image cleared (or shows original first frame without mask)
|
684 |
+
output_video, # Hide output video
|
685 |
+
session_state, # Updated session state (points/labels cleared, inference state reset)
|
686 |
],
|
687 |
+
queue=False, # Process immediately
|
688 |
)
|
689 |
|
690 |
+
# Button to reset the entire demo state and UI
|
691 |
reset_btn.click(
|
692 |
fn=reset,
|
693 |
+
inputs=[session_state], # Pass session state
|
694 |
outputs=[
|
695 |
+
video_in, # Clear video input
|
696 |
+
video_in_drawer, # Open video accordion
|
697 |
+
points_map, # Clear points_map
|
698 |
+
output_image, # Clear output_image
|
699 |
+
output_video, # Hide output_video
|
700 |
+
propagate_btn, # Disable buttons
|
701 |
+
clear_points_btn,# Disable buttons
|
702 |
+
reset_btn, # Disable buttons
|
703 |
+
session_state, # Reset session state
|
704 |
],
|
705 |
+
queue=False, # Process immediately
|
706 |
)
|
707 |
|
708 |
+
# Button to start mask propagation through the video
|
709 |
propagate_btn.click(
|
710 |
+
fn=update_output_video_visibility, # First, make the output video player visible
|
711 |
inputs=[],
|
712 |
+
outputs=[output_video],
|
713 |
+
queue=False, # Process this UI update immediately
|
714 |
+
).then( # Then, run the propagation function
|
715 |
fn=propagate_to_all,
|
716 |
inputs=[
|
717 |
+
video_in, # Get the input video path
|
718 |
+
session_state, # Pass session state (contains frames, points, inference_state)
|
719 |
],
|
720 |
outputs=[
|
721 |
+
output_video, # Update output video player with result
|
722 |
+
session_state, # Update session state (currently, propagate doesn't modify state much, but good practice)
|
723 |
],
|
724 |
+
# CPU Optimization: Limit concurrency to 1 to prevent resource exhaustion.
|
725 |
+
# Queue=True ensures requests wait if another is processing.
|
726 |
+
concurrency_limit=1,
|
727 |
+
queue=True,
|
728 |
)
|
729 |
|
730 |
|
731 |
+
# Launch the Gradio demo
|
732 |
+
demo.queue() # Enable queuing for sequential processing under concurrency limits
|
733 |
+
print("Gradio demo starting...")
|
734 |
demo.launch()
|
735 |
+
print("Gradio demo launched.")
|