Update app.py
Browse files
app.py
CHANGED
@@ -7,27 +7,24 @@
|
|
7 |
import copy
|
8 |
import os
|
9 |
from datetime import datetime
|
10 |
-
|
11 |
-
import gradio as gr
|
12 |
-
|
13 |
-
# Removed GPU-specific environment variable setting
|
14 |
-
# os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "0,1,2,3,4,5,6,7"
|
15 |
-
|
16 |
import tempfile
|
17 |
|
18 |
import cv2
|
19 |
import matplotlib.pyplot as plt
|
20 |
import numpy as np
|
21 |
-
|
22 |
-
# import spaces # Removed spaces import
|
23 |
import torch
|
24 |
|
25 |
from moviepy.editor import ImageSequenceClip
|
26 |
from PIL import Image
|
27 |
from sam2.build_sam import build_sam2_video_predictor
|
28 |
|
|
|
|
|
|
|
|
|
29 |
# Description
|
30 |
-
title = "<center><strong><font size='8'>EdgeTAM<font></strong> <a href='https://github.com/facebookresearch/EdgeTAM'><font size='6'>[GitHub]</font></a> </center>"
|
31 |
|
32 |
description_p = """# Instructions
|
33 |
<ol>
|
@@ -38,535 +35,314 @@ description_p = """# Instructions
|
|
38 |
</ol>
|
39 |
"""
|
40 |
|
41 |
-
# examples -
|
42 |
examples = [
|
43 |
["examples/01_dog.mp4"],
|
44 |
["examples/02_cups.mp4"],
|
45 |
["examples/03_blocks.mp4"],
|
46 |
["examples/04_coffee.mp4"],
|
47 |
["examples/05_default_juggle.mp4"],
|
48 |
-
["examples/01_breakdancer.mp4"],
|
49 |
-
["examples/02_hummingbird.mp4"],
|
50 |
-
["examples/03_skateboarder.mp4"],
|
51 |
-
["examples/04_octopus.mp4"],
|
52 |
-
["examples/05_landing_dog_soccer.mp4"],
|
53 |
-
["examples/06_pingpong.mp4"],
|
54 |
-
["examples/07_snowboarder.mp4"],
|
55 |
-
["examples/08_driving.mp4"],
|
56 |
-
["examples/09_birdcartoon.mp4"],
|
57 |
-
["examples/10_cloth_magic.mp4"],
|
58 |
-
["examples/11_polevault.mp4"],
|
59 |
-
["examples/12_hideandseek.mp4"],
|
60 |
-
["examples/13_butterfly.mp4"],
|
61 |
-
["examples/14_social_dog_training.mp4"],
|
62 |
-
["examples/15_cricket.mp4"],
|
63 |
-
["examples/16_robotarm.mp4"],
|
64 |
-
["examples/17_childrendancing.mp4"],
|
65 |
-
["examples/18_threedogs.mp4"],
|
66 |
-
["examples/19_cyclist.mp4"],
|
67 |
-
["examples/20_doughkneading.mp4"],
|
68 |
-
["examples/21_biker.mp4"],
|
69 |
-
["examples/22_dogskateboarder.mp4"],
|
70 |
-
["examples/23_racecar.mp4"],
|
71 |
-
["examples/24_clownfish.mp4"],
|
72 |
]
|
73 |
|
74 |
OBJ_ID = 0
|
75 |
|
|
|
76 |
sam2_checkpoint = "checkpoints/edgetam.pt"
|
77 |
model_cfg = "edgetam.yaml"
|
78 |
-
# Ensure predictor is explicitly built for CPU
|
79 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
|
80 |
-
# Removed .to("cuda") - predictor is already on CPU from build_sam2_video_predictor
|
81 |
-
# predictor.to("cuda")
|
82 |
print("predictor loaded on CPU")
|
83 |
|
84 |
-
#
|
85 |
-
# torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
86 |
-
# if torch.cuda.is_available() and torch.cuda.get_device_properties(0).major >= 8:
|
87 |
-
# torch.backends.cuda.matmul.allow_tf32 = True
|
88 |
-
# torch.backends.cudnn.allow_tf32 = True
|
89 |
-
# elif not torch.cuda.is_available():
|
90 |
-
# print("Warning: CUDA not available. Running on CPU.")
|
91 |
-
|
92 |
-
|
93 |
def get_video_fps(video_path):
|
94 |
-
"""Gets the frames per second of a video file."""
|
95 |
-
if video_path is None or not os.path.exists(video_path):
|
96 |
-
print(f"Warning: Video file not found at {video_path}")
|
97 |
-
return None
|
98 |
cap = cv2.VideoCapture(video_path)
|
99 |
if not cap.isOpened():
|
100 |
-
print(
|
101 |
-
return
|
102 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
103 |
-
cap.release()
|
104 |
return fps
|
105 |
|
106 |
|
107 |
def reset(session_state):
|
108 |
-
"""Resets the UI and session state."""
|
109 |
-
print("Resetting demo.")
|
110 |
session_state["input_points"] = []
|
111 |
session_state["input_labels"] = []
|
112 |
-
# Reset the predictor state if it exists
|
113 |
if session_state["inference_state"] is not None:
|
114 |
-
|
115 |
-
# Assuming predictor.reset_state handles clearing current masks/features
|
116 |
-
predictor.reset_state(session_state["inference_state"])
|
117 |
-
# Explicitly delete or re-init the state object if a full reset is intended
|
118 |
-
# This depends on how predictor.reset_state works. Setting to None is safest for a full reset.
|
119 |
-
session_state["inference_state"] = None
|
120 |
-
except Exception as e:
|
121 |
-
print(f"Error resetting predictor state: {e}")
|
122 |
-
session_state["inference_state"] = None # Force-clear on error
|
123 |
-
|
124 |
session_state["first_frame"] = None
|
125 |
session_state["all_frames"] = None
|
126 |
-
session_state["inference_state"] = None
|
127 |
-
# Also reset video path if stored
|
128 |
-
session_state["video_path"] = None
|
129 |
-
|
130 |
-
# Resetting UI components and disabling buttons
|
131 |
return (
|
132 |
-
None,
|
133 |
-
gr.update(open=True),
|
134 |
-
None,
|
135 |
-
None,
|
136 |
-
gr.update(value=None, visible=False),
|
137 |
-
|
138 |
-
gr.update(interactive=False), # clear_points_btn disabled
|
139 |
-
gr.update(interactive=False), # reset_btn disabled
|
140 |
-
session_state, # return updated session state
|
141 |
)
|
142 |
|
143 |
|
144 |
def clear_points(session_state):
|
145 |
-
"""Clears selected points and resets segmentation on the first frame."""
|
146 |
-
print("Clearing points.")
|
147 |
session_state["input_points"] = []
|
148 |
session_state["input_labels"] = []
|
149 |
-
|
150 |
-
|
151 |
-
# This typically doesn't remove the video context, just the mask predictions
|
152 |
-
if session_state["inference_state"] is not None:
|
153 |
-
try:
|
154 |
-
# Assuming reset_state handles clearing current masks/features
|
155 |
-
predictor.reset_state(session_state["inference_state"])
|
156 |
-
print("Predictor state reset for clearing points.")
|
157 |
-
# If you need to re-initialize the state for the *same* video after clearing points,
|
158 |
-
# you might need to call predictor.init_state again here, using the stored video_path.
|
159 |
-
# Since we are on CPU, device="cpu" is implicit now.
|
160 |
-
if session_state["video_path"] is not None:
|
161 |
-
session_state["inference_state"] = predictor.init_state(video_path=session_state["video_path"])
|
162 |
-
print("Predictor state re-initialized after clearing points.")
|
163 |
-
else:
|
164 |
-
print("Warning: Could not re-initialize state after clear_points (video_path missing).")
|
165 |
-
session_state["inference_state"] = None # Ensure state is None if video_path is gone
|
166 |
-
|
167 |
-
|
168 |
-
except Exception as e:
|
169 |
-
print(f"Error resetting predictor state during clear_points: {e}")
|
170 |
-
# If reset fails, this might leave old masks. Force-clear state on error.
|
171 |
-
session_state["inference_state"] = None
|
172 |
-
|
173 |
-
|
174 |
-
# Return the original first frame image for points_map and clear the output_image
|
175 |
-
first_frame_img = session_state["first_frame"] if session_state["first_frame"] is not None else None
|
176 |
-
|
177 |
return (
|
178 |
-
|
179 |
-
None,
|
180 |
-
gr.update(value=None, visible=False),
|
181 |
-
session_state,
|
182 |
)
|
183 |
|
184 |
|
185 |
-
# Removed @spaces.GPU decorator
|
186 |
def preprocess_video_in(video_path, session_state):
|
187 |
-
|
188 |
-
print(f"Processing video: {video_path}")
|
189 |
-
if video_path is None or not os.path.exists(video_path):
|
190 |
-
print("No video path provided or file not found.")
|
191 |
-
# Reset state and UI elements if input is invalid
|
192 |
-
# Need to return updates for the buttons as well
|
193 |
return (
|
194 |
-
gr.update(open=True),
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
}
|
200 |
)
|
201 |
|
|
|
202 |
cap = cv2.VideoCapture(video_path)
|
203 |
if not cap.isOpened():
|
204 |
-
print(
|
205 |
return (
|
206 |
-
gr.update(open=True),
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
}
|
212 |
)
|
213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
first_frame = None
|
215 |
all_frames = []
|
216 |
-
|
|
|
|
|
|
|
|
|
|
|
217 |
while True:
|
218 |
ret, frame = cap.read()
|
219 |
if not ret:
|
220 |
break
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
cap.release()
|
227 |
-
|
228 |
-
if not all_frames:
|
229 |
-
print(f"Error: No frames read from video file {video_path}.")
|
230 |
-
return (
|
231 |
-
gr.update(open=True), None, None, gr.update(value=None, visible=False),
|
232 |
-
gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False),
|
233 |
-
{ # Reset session state
|
234 |
-
"first_frame": None, "all_frames": None, "input_points": [],
|
235 |
-
"input_labels": [], "inference_state": None, "video_path": None,
|
236 |
-
}
|
237 |
-
)
|
238 |
-
|
239 |
-
# Update session state with frames and path
|
240 |
-
session_state["first_frame"] = copy.deepcopy(first_frame) # Store a copy
|
241 |
session_state["all_frames"] = all_frames
|
242 |
-
session_state["
|
|
|
|
|
|
|
|
|
|
|
243 |
session_state["input_points"] = []
|
244 |
session_state["input_labels"] = []
|
245 |
-
# Initialize state WITHOUT the device argument (uses predictor's device, which is CPU)
|
246 |
-
session_state["inference_state"] = predictor.init_state(video_path=video_path)
|
247 |
-
print("Video loaded and predictor state initialized on CPU.")
|
248 |
|
249 |
-
# Enable buttons after successful load
|
250 |
return [
|
251 |
gr.update(open=False), # video_in_drawer
|
252 |
-
first_frame, # points_map
|
253 |
-
None, # output_image
|
254 |
-
gr.update(value=None, visible=False), # output_video
|
255 |
-
|
256 |
-
gr.update(interactive=True), # clear_points_btn enabled
|
257 |
-
gr.update(interactive=True), # reset_btn enabled
|
258 |
-
session_state, # session_state
|
259 |
]
|
260 |
|
261 |
|
262 |
-
# Removed @spaces.GPU decorator
|
263 |
def segment_with_points(
|
264 |
point_type,
|
265 |
session_state,
|
266 |
evt: gr.SelectData,
|
267 |
):
|
268 |
-
""
|
269 |
-
|
270 |
-
if session_state["first_frame"] is None or session_state["inference_state"] is None:
|
271 |
-
print("Error: Cannot segment. No video loaded or inference state missing.")
|
272 |
-
# Return current states to avoid errors, without changing UI much
|
273 |
-
return (
|
274 |
-
session_state.get("first_frame"), # points_map (show first frame if exists)
|
275 |
-
None, # output_image (keep cleared)
|
276 |
-
session_state,
|
277 |
-
)
|
278 |
-
|
279 |
-
# evt.index is the (x, y) coordinate tuple
|
280 |
-
click_coords = evt.index
|
281 |
-
print(f"Clicked at: {click_coords} ({point_type})")
|
282 |
-
|
283 |
-
session_state["input_points"].append(click_coords)
|
284 |
|
285 |
if point_type == "include":
|
286 |
session_state["input_labels"].append(1)
|
287 |
elif point_type == "exclude":
|
288 |
session_state["input_labels"].append(0)
|
|
|
289 |
|
290 |
-
#
|
291 |
-
|
292 |
-
|
|
|
|
|
293 |
|
294 |
-
# Define the circle radius
|
295 |
-
fraction = 0.01
|
296 |
-
radius =
|
297 |
|
298 |
-
# Create a transparent layer to draw
|
299 |
-
|
300 |
|
301 |
-
# Draw points on the transparent layer
|
302 |
for index, track in enumerate(session_state["input_points"]):
|
303 |
-
# Ensure coordinates are integers for cv2.circle
|
304 |
-
point_coords = (int(track[0]), int(track[1]))
|
305 |
-
# Ensure color is RGBA (0-255)
|
306 |
if session_state["input_labels"][index] == 1:
|
307 |
-
cv2.circle(
|
308 |
else:
|
309 |
-
cv2.circle(
|
310 |
-
|
311 |
-
# Convert the transparent layer back to an image
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
selected_point_map_img = Image.alpha_composite(
|
316 |
-
first_frame_pil.copy(), transparent_layer_points_pil
|
317 |
)
|
318 |
|
319 |
-
#
|
320 |
points = np.array(session_state["input_points"], dtype=np.float32)
|
|
|
321 |
labels = np.array(session_state["input_labels"], np.int32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
|
323 |
-
|
324 |
-
|
325 |
-
points_tensor = torch.tensor(points, dtype=torch.float32, device=device).unsqueeze(0) # Add batch dim
|
326 |
-
labels_tensor = torch.tensor(labels, dtype=torch.int32, device=device).unsqueeze(0) # Add batch dim
|
327 |
-
|
328 |
-
|
329 |
-
first_frame_output_img = None # Initialize output mask image as None in case of error
|
330 |
-
try:
|
331 |
-
# Note: predictor.add_new_points modifies the internal inference_state
|
332 |
-
_, _, out_mask_logits = predictor.add_new_points(
|
333 |
-
inference_state=session_state["inference_state"],
|
334 |
-
frame_idx=0, # Always segment on the first frame initially
|
335 |
-
obj_id=OBJ_ID,
|
336 |
-
points=points_tensor,
|
337 |
-
labels=labels_tensor,
|
338 |
-
)
|
339 |
-
|
340 |
-
# Process logits: detach from graph, move to CPU, apply threshold
|
341 |
-
# out_mask_logits is a list of tensors [tensor([batch_size, H, W])] for the requested obj_id
|
342 |
-
# Access the result for the first object (index 0) and the first item in batch (index 0)
|
343 |
-
mask_tensor = (out_mask_logits[0][0].detach().cpu() > 0.0) # Move to CPU before converting to numpy
|
344 |
-
mask_numpy = mask_tensor.numpy() # Convert to numpy
|
345 |
-
|
346 |
-
# Get the mask image (RGBA)
|
347 |
-
mask_image_pil = show_mask(mask_numpy, obj_id=OBJ_ID) # show_mask returns RGBA PIL Image
|
348 |
-
|
349 |
-
# Composite the mask onto the first frame for the output_image
|
350 |
-
# output_image shows the first frame *with the segmentation mask result*.
|
351 |
-
first_frame_output_img = Image.alpha_composite(first_frame_pil.copy(), mask_image_pil)
|
352 |
-
|
353 |
-
except Exception as e:
|
354 |
-
print(f"Error during segmentation on first frame: {e}")
|
355 |
-
# On error, first_frame_output_img remains None
|
356 |
-
|
357 |
-
# Removed CUDA cache clearing call
|
358 |
-
# if torch.cuda.is_available():
|
359 |
-
# torch.cuda.empty_cache()
|
360 |
|
361 |
-
return
|
362 |
|
363 |
|
364 |
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
365 |
-
"""Helper function to visualize a mask."""
|
366 |
-
# Ensure mask is a numpy array (and boolean)
|
367 |
-
if isinstance(mask, torch.Tensor):
|
368 |
-
mask = mask.detach().cpu().numpy() # Ensure it's on CPU and converted to numpy
|
369 |
-
# Convert potential float/int mask to boolean mask
|
370 |
-
mask = mask.astype(bool)
|
371 |
-
|
372 |
if random_color:
|
373 |
-
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
374 |
else:
|
375 |
cmap = plt.get_cmap("tab10")
|
376 |
-
cmap_idx = 0 if obj_id is None else obj_id
|
377 |
-
color = np.array([*cmap(cmap_idx)[:3], 0.6])
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
mask = mask.squeeze() # Remove singular dimensions like (H, W, 1)
|
382 |
-
if mask.ndim != 2:
|
383 |
-
print(f"Warning: show_mask received mask with shape {mask.shape}. Expected 2D.")
|
384 |
-
# Create an empty transparent image if mask shape is unexpected
|
385 |
-
h, w = mask.shape[:2] if mask.ndim >= 2 else (100, 100) # Use actual shape if possible, otherwise default
|
386 |
-
if convert_to_image:
|
387 |
-
return Image.fromarray(np.zeros((h, w, 4), dtype=np.uint8), "RGBA")
|
388 |
-
else:
|
389 |
-
return np.zeros((h, w, 4), dtype=np.uint8)
|
390 |
-
|
391 |
-
h, w = mask.shape
|
392 |
-
# Create an RGBA image from the mask and color
|
393 |
-
# Apply color where mask is True
|
394 |
-
# Need to reshape color to be broadcastable [1, 1, 4]
|
395 |
-
colored_mask = np.zeros((h, w, 4), dtype=np.float32) # Start with fully transparent black
|
396 |
-
# Apply the color only where the mask is True.
|
397 |
-
# This directly creates the colored overlay with transparency.
|
398 |
-
colored_mask[mask] = color
|
399 |
-
|
400 |
-
# Convert to uint8 [0-255]
|
401 |
-
colored_mask_uint8 = (colored_mask * 255).astype(np.uint8)
|
402 |
-
|
403 |
if convert_to_image:
|
404 |
-
|
405 |
-
|
406 |
-
else:
|
407 |
-
return colored_mask_uint8
|
408 |
|
409 |
|
410 |
-
# Removed @spaces.GPU decorator
|
411 |
def propagate_to_all(
|
412 |
-
video_in,
|
413 |
session_state,
|
414 |
):
|
415 |
-
"""Runs mask propagation through the video and generates the output video."""
|
416 |
-
print("Starting propagation...")
|
417 |
-
# Ensure state is ready
|
418 |
-
# Using session_state.get("video_path") is safer than video_in directly
|
419 |
-
current_video_path = session_state.get("video_path")
|
420 |
if (
|
421 |
-
len(session_state["input_points"]) == 0
|
422 |
-
or
|
423 |
or session_state["inference_state"] is None
|
424 |
-
or current_video_path is None # Ensure we have the original video path
|
425 |
):
|
426 |
-
print("Error: Cannot propagate. No points selected, video not loaded, or inference state missing.")
|
427 |
-
return (
|
428 |
-
gr.update(value=None, visible=False), # Hide output video on error
|
429 |
-
session_state,
|
430 |
-
)
|
431 |
-
|
432 |
-
# run propagation throughout the video and collect the results
|
433 |
-
video_segments = {}
|
434 |
-
try:
|
435 |
-
# This loop performs the core tracking prediction frame by frame
|
436 |
-
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
|
437 |
-
session_state["inference_state"]
|
438 |
-
):
|
439 |
-
# Process logits: detach from graph, move to CPU, convert to numpy boolean mask
|
440 |
-
# Ensure tensor is on CPU before converting to numpy
|
441 |
-
video_segments[out_frame_idx] = {
|
442 |
-
# out_mask_logits is a list of tensors (one per object tracked in this frame)
|
443 |
-
# Each tensor is [batch_size, H, W]. Batch size is 1 here.
|
444 |
-
# Access the result for the first object (index i) and the first item in batch (index 0)
|
445 |
-
out_obj_id: (out_mask_logits[i][0].detach().cpu() > 0.0).numpy()
|
446 |
-
for i, out_obj_id in enumerate(out_obj_ids)
|
447 |
-
}
|
448 |
-
# Optional: print progress
|
449 |
-
# print(f"Processed frame {out_frame_idx+1}/{len(session_state['all_frames'])}")
|
450 |
-
|
451 |
-
print("Propagation finished.")
|
452 |
-
except Exception as e:
|
453 |
-
print(f"Error during propagation: {e}")
|
454 |
return (
|
455 |
-
|
456 |
session_state,
|
457 |
)
|
458 |
|
459 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
460 |
output_frames = []
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
current_mask_numpy = video_segments[out_frame_idx][OBJ_ID]
|
471 |
-
# Get the mask image (RGBA)
|
472 |
-
mask_image_pil = show_mask(current_mask_numpy, obj_id=OBJ_ID)
|
473 |
-
# Composite the mask onto the frame
|
474 |
-
output_frame_img_rgba = Image.alpha_composite(transparent_background, mask_image_pil)
|
475 |
-
# Convert back to numpy RGB (moviepy needs RGB or RGBA)
|
476 |
-
output_frame_np = np.array(output_frame_img_rgba.convert("RGB"))
|
477 |
-
else:
|
478 |
-
# If no mask for this frame/object, just use the original frame (converted to RGB)
|
479 |
-
# Note: all_frames are already RGB numpy arrays, so just use them directly.
|
480 |
-
# print(f"Warning: No mask found for frame {out_frame_idx} and object {OBJ_ID}. Using original frame.")
|
481 |
-
output_frame_np = original_frame_rgb # Already RGB numpy array
|
482 |
-
|
483 |
-
output_frames.append(output_frame_np)
|
484 |
-
|
485 |
-
# Removed CUDA cache clearing call
|
486 |
-
# if torch.cuda.is_available():
|
487 |
-
# torch.cuda.empty_cache()
|
488 |
-
|
489 |
-
# Define output path in a temporary directory
|
490 |
-
unique_id = datetime.now().strftime("%Y%m%d%H%M%S%f") # Use microseconds for more uniqueness
|
491 |
-
final_vid_filename = f"output_video_{unique_id}.mp4"
|
492 |
-
final_vid_output_path = os.path.join(tempfile.gettempdir(), final_vid_filename)
|
493 |
-
print(f"Output video path: {final_vid_output_path}")
|
494 |
-
|
495 |
|
496 |
# Create a video clip from the image sequence
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
|
|
|
|
|
|
|
|
509 |
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
print(f"Error creating ImageSequenceClip: {e}")
|
515 |
-
return (
|
516 |
-
gr.update(value=None, visible=False), # Hide output video on error
|
517 |
-
session_state,
|
518 |
-
)
|
519 |
-
|
520 |
-
# Write the result to a file. Use 'libx264' codec for broad compatibility.
|
521 |
-
# Added CPU optimization parameters for moviepy write
|
522 |
-
try:
|
523 |
-
print(f"Writing video file with codec='libx264', fps={fps}, preset='medium', threads='auto'")
|
524 |
-
clip.write_videofile(
|
525 |
-
final_vid_output_path,
|
526 |
-
codec="libx264",
|
527 |
-
fps=fps, # Ensure correct FPS is used during writing
|
528 |
-
preset="medium", # CPU optimization: 'fast', 'faster', 'veryfast' are options for speed vs size
|
529 |
-
threads="auto", # CPU optimization: Use multiple cores
|
530 |
-
logger=None # Suppress moviepy output
|
531 |
-
)
|
532 |
-
print("Video writing complete.")
|
533 |
-
# Return the path and make the video player visible
|
534 |
-
return (
|
535 |
-
gr.update(value=final_vid_output_path, visible=True),
|
536 |
-
session_state,
|
537 |
-
)
|
538 |
-
except Exception as e:
|
539 |
-
print(f"Error writing video file: {e}")
|
540 |
-
# Clean up potentially created partial file
|
541 |
-
if os.path.exists(final_vid_output_path):
|
542 |
-
try:
|
543 |
-
os.remove(final_vid_output_path)
|
544 |
-
print(f"Removed partial video file: {final_vid_output_path}")
|
545 |
-
except Exception as clean_e:
|
546 |
-
print(f"Error removing partial file: {clean_e}")
|
547 |
-
|
548 |
-
# Return None if writing fails
|
549 |
-
return (
|
550 |
-
gr.update(value=None, visible=False),
|
551 |
-
session_state,
|
552 |
-
)
|
553 |
|
554 |
|
555 |
-
def
|
556 |
-
"""Simply returns a Gradio update to make the output video visible."""
|
557 |
return gr.update(visible=True)
|
558 |
|
559 |
|
560 |
with gr.Blocks() as demo:
|
561 |
-
# Session state dictionary to hold video frames, points, labels, and predictor state
|
562 |
session_state = gr.State(
|
563 |
{
|
564 |
-
"first_frame": None,
|
565 |
-
"all_frames": None,
|
566 |
-
"input_points": [],
|
567 |
-
"input_labels": [],
|
568 |
-
"inference_state": None,
|
569 |
-
"
|
|
|
|
|
570 |
}
|
571 |
)
|
572 |
|
@@ -580,7 +356,7 @@ with gr.Blocks() as demo:
|
|
580 |
gr.Markdown(description_p)
|
581 |
|
582 |
with gr.Accordion("Input Video", open=True) as video_in_drawer:
|
583 |
-
video_in = gr.Video(label="Input Video", format="mp4")
|
584 |
|
585 |
with gr.Row():
|
586 |
point_type = gr.Radio(
|
@@ -588,142 +364,121 @@ with gr.Blocks() as demo:
|
|
588 |
choices=["include", "exclude"],
|
589 |
value="include",
|
590 |
scale=2,
|
591 |
-
interactive=True, # Make interactive
|
592 |
)
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
reset_btn = gr.Button("Reset", scale=1, interactive=False)
|
597 |
|
598 |
-
# points_map is where users click to add points. Needs to be interactive.
|
599 |
-
# Shows the first frame with points drawn on it.
|
600 |
points_map = gr.Image(
|
601 |
-
label="
|
602 |
-
type="numpy",
|
603 |
-
interactive=True, # <--- CHANGED TO True to enable clicking
|
604 |
-
height=400, # Set a fixed height for better UI
|
605 |
-
width="auto", # Let width adjust
|
606 |
-
show_share_button=False,
|
607 |
-
show_download_button=False,
|
608 |
)
|
609 |
|
610 |
with gr.Column():
|
611 |
gr.Markdown("# Try some of the examples below ⬇️")
|
612 |
gr.Examples(
|
613 |
examples=examples,
|
614 |
-
inputs=[
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
# Removed extra blank lines
|
619 |
-
|
620 |
-
# output_image shows the segmentation mask prediction on the *first* frame
|
621 |
-
output_image = gr.Image(
|
622 |
-
label="Segmentation Mask on First Frame", # Clearer label
|
623 |
-
type="numpy",
|
624 |
-
interactive=False, # Not interactive, just displays the mask
|
625 |
-
height=400, # Match height of points_map
|
626 |
-
width="auto", # Let width adjust
|
627 |
-
show_share_button=False,
|
628 |
-
show_download_button=False,
|
629 |
)
|
|
|
|
|
|
|
630 |
|
631 |
-
|
632 |
-
output_video = gr.Video(visible=False, label="Tracking Result")
|
633 |
-
|
634 |
-
|
635 |
-
# --- Event Handlers ---
|
636 |
-
|
637 |
-
# When a new video file is uploaded via the file browser
|
638 |
-
# Added postprocess to update button interactivity based on whether video loaded
|
639 |
video_in.upload(
|
640 |
fn=preprocess_video_in,
|
641 |
-
inputs=[
|
|
|
|
|
|
|
642 |
outputs=[
|
643 |
-
video_in_drawer,
|
644 |
-
|
|
|
|
|
|
|
645 |
],
|
646 |
-
queue=False,
|
647 |
)
|
648 |
|
649 |
-
# When an example video is selected (change event)
|
650 |
-
# Added postprocess to update button interactivity
|
651 |
video_in.change(
|
652 |
fn=preprocess_video_in,
|
653 |
-
inputs=[
|
|
|
|
|
|
|
654 |
outputs=[
|
655 |
-
video_in_drawer,
|
656 |
-
|
|
|
|
|
|
|
657 |
],
|
658 |
-
queue=False,
|
659 |
)
|
660 |
|
661 |
-
|
662 |
-
# Triggered when a user clicks on the points_map image
|
663 |
points_map.select(
|
664 |
fn=segment_with_points,
|
665 |
inputs=[
|
666 |
-
point_type, # "include" or "exclude"
|
667 |
-
session_state,
|
668 |
],
|
669 |
outputs=[
|
670 |
-
points_map,
|
671 |
-
output_image,
|
672 |
-
session_state,
|
673 |
],
|
674 |
-
queue=False,
|
675 |
)
|
676 |
|
677 |
-
#
|
678 |
clear_points_btn.click(
|
679 |
fn=clear_points,
|
680 |
-
inputs=
|
681 |
outputs=[
|
682 |
-
points_map,
|
683 |
-
output_image,
|
684 |
-
output_video,
|
685 |
-
session_state,
|
686 |
],
|
687 |
-
queue=False,
|
688 |
)
|
689 |
|
690 |
-
# Button to reset the entire demo state and UI
|
691 |
reset_btn.click(
|
692 |
fn=reset,
|
693 |
-
inputs=
|
694 |
outputs=[
|
695 |
-
video_in,
|
696 |
-
|
|
|
|
|
|
|
|
|
697 |
],
|
698 |
-
queue=False,
|
699 |
)
|
700 |
|
701 |
-
# Button to start mask propagation through the video
|
702 |
propagate_btn.click(
|
703 |
-
fn=
|
704 |
inputs=[],
|
705 |
-
outputs=
|
706 |
-
queue=False,
|
707 |
-
).then(
|
708 |
fn=propagate_to_all,
|
709 |
inputs=[
|
710 |
-
video_in,
|
711 |
-
session_state,
|
712 |
],
|
713 |
outputs=[
|
714 |
-
output_video,
|
715 |
-
session_state,
|
716 |
],
|
717 |
-
#
|
718 |
-
# Queue=True ensures requests wait if another is processing.
|
719 |
-
concurrency_limit=1,
|
720 |
-
queue=True,
|
721 |
)
|
722 |
|
723 |
|
724 |
-
|
725 |
-
demo.
|
726 |
-
print("Gradio demo starting...")
|
727 |
-
# Removed share=True for local debugging unless you specifically need a public link
|
728 |
-
demo.launch()
|
729 |
-
print("Gradio demo launched.")
|
|
|
7 |
import copy
|
8 |
import os
|
9 |
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
import tempfile
|
11 |
|
12 |
import cv2
|
13 |
import matplotlib.pyplot as plt
|
14 |
import numpy as np
|
15 |
+
import gradio as gr
|
|
|
16 |
import torch
|
17 |
|
18 |
from moviepy.editor import ImageSequenceClip
|
19 |
from PIL import Image
|
20 |
from sam2.build_sam import build_sam2_video_predictor
|
21 |
|
22 |
+
# Remove CUDA environment variables
|
23 |
+
if 'TORCH_CUDNN_SDPA_ENABLED' in os.environ:
|
24 |
+
del os.environ["TORCH_CUDNN_SDPA_ENABLED"]
|
25 |
+
|
26 |
# Description
|
27 |
+
title = "<center><strong><font size='8'>EdgeTAM CPU<font></strong> <a href='https://github.com/facebookresearch/EdgeTAM'><font size='6'>[GitHub]</font></a> </center>"
|
28 |
|
29 |
description_p = """# Instructions
|
30 |
<ol>
|
|
|
35 |
</ol>
|
36 |
"""
|
37 |
|
38 |
+
# examples - keeping fewer examples to reduce memory footprint
|
39 |
examples = [
|
40 |
["examples/01_dog.mp4"],
|
41 |
["examples/02_cups.mp4"],
|
42 |
["examples/03_blocks.mp4"],
|
43 |
["examples/04_coffee.mp4"],
|
44 |
["examples/05_default_juggle.mp4"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
]
|
46 |
|
47 |
OBJ_ID = 0
|
48 |
|
49 |
+
# Initialize model on CPU
|
50 |
sam2_checkpoint = "checkpoints/edgetam.pt"
|
51 |
model_cfg = "edgetam.yaml"
|
|
|
52 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
|
|
|
|
|
53 |
print("predictor loaded on CPU")
|
54 |
|
55 |
+
# Function to get video frame rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
def get_video_fps(video_path):
|
|
|
|
|
|
|
|
|
57 |
cap = cv2.VideoCapture(video_path)
|
58 |
if not cap.isOpened():
|
59 |
+
print("Error: Could not open video.")
|
60 |
+
return 30.0 # Default fallback value
|
61 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
62 |
+
cap.release()
|
63 |
return fps
|
64 |
|
65 |
|
66 |
def reset(session_state):
|
|
|
|
|
67 |
session_state["input_points"] = []
|
68 |
session_state["input_labels"] = []
|
|
|
69 |
if session_state["inference_state"] is not None:
|
70 |
+
predictor.reset_state(session_state["inference_state"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
session_state["first_frame"] = None
|
72 |
session_state["all_frames"] = None
|
73 |
+
session_state["inference_state"] = None
|
|
|
|
|
|
|
|
|
74 |
return (
|
75 |
+
None,
|
76 |
+
gr.update(open=True),
|
77 |
+
None,
|
78 |
+
None,
|
79 |
+
gr.update(value=None, visible=False),
|
80 |
+
session_state,
|
|
|
|
|
|
|
81 |
)
|
82 |
|
83 |
|
84 |
def clear_points(session_state):
|
|
|
|
|
85 |
session_state["input_points"] = []
|
86 |
session_state["input_labels"] = []
|
87 |
+
if session_state["inference_state"] is not None and session_state["inference_state"].get("tracking_has_started", False):
|
88 |
+
predictor.reset_state(session_state["inference_state"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
return (
|
90 |
+
session_state["first_frame"],
|
91 |
+
None,
|
92 |
+
gr.update(value=None, visible=False),
|
93 |
+
session_state,
|
94 |
)
|
95 |
|
96 |
|
|
|
97 |
def preprocess_video_in(video_path, session_state):
|
98 |
+
if video_path is None:
|
|
|
|
|
|
|
|
|
|
|
99 |
return (
|
100 |
+
gr.update(open=True), # video_in_drawer
|
101 |
+
None, # points_map
|
102 |
+
None, # output_image
|
103 |
+
gr.update(value=None, visible=False), # output_video
|
104 |
+
session_state,
|
|
|
105 |
)
|
106 |
|
107 |
+
# Read the first frame
|
108 |
cap = cv2.VideoCapture(video_path)
|
109 |
if not cap.isOpened():
|
110 |
+
print("Error: Could not open video.")
|
111 |
return (
|
112 |
+
gr.update(open=True), # video_in_drawer
|
113 |
+
None, # points_map
|
114 |
+
None, # output_image
|
115 |
+
gr.update(value=None, visible=False), # output_video
|
116 |
+
session_state,
|
|
|
117 |
)
|
118 |
|
119 |
+
# For CPU optimization - determine video properties
|
120 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
121 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
122 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
123 |
+
|
124 |
+
# Determine if we need to resize for CPU performance
|
125 |
+
target_width = 640 # Target width for processing on CPU
|
126 |
+
scale_factor = 1.0
|
127 |
+
|
128 |
+
if frame_width > target_width:
|
129 |
+
scale_factor = target_width / frame_width
|
130 |
+
frame_width = target_width
|
131 |
+
frame_height = int(frame_height * scale_factor)
|
132 |
+
|
133 |
+
# Read frames - for CPU we'll be more selective about which frames to keep
|
134 |
+
frame_number = 0
|
135 |
first_frame = None
|
136 |
all_frames = []
|
137 |
+
|
138 |
+
# For CPU optimization, skip frames if video is too long
|
139 |
+
frame_stride = 1
|
140 |
+
if total_frames > 300: # If more than 300 frames
|
141 |
+
frame_stride = max(1, int(total_frames / 300)) # Process at most ~300 frames
|
142 |
+
|
143 |
while True:
|
144 |
ret, frame = cap.read()
|
145 |
if not ret:
|
146 |
break
|
147 |
+
|
148 |
+
if frame_number % frame_stride == 0: # Process every frame_stride frames
|
149 |
+
# Resize the frame if needed
|
150 |
+
if scale_factor != 1.0:
|
151 |
+
frame = cv2.resize(frame, (frame_width, frame_height), interpolation=cv2.INTER_AREA)
|
152 |
+
|
153 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
154 |
+
frame = np.array(frame)
|
155 |
+
|
156 |
+
# Store the first frame
|
157 |
+
if first_frame is None:
|
158 |
+
first_frame = frame
|
159 |
+
all_frames.append(frame)
|
160 |
+
|
161 |
+
frame_number += 1
|
162 |
|
163 |
cap.release()
|
164 |
+
session_state["first_frame"] = copy.deepcopy(first_frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
session_state["all_frames"] = all_frames
|
166 |
+
session_state["frame_stride"] = frame_stride
|
167 |
+
session_state["scale_factor"] = scale_factor
|
168 |
+
session_state["original_dimensions"] = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
|
169 |
+
int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
|
170 |
+
|
171 |
+
session_state["inference_state"] = predictor.init_state(video_path=video_path)
|
172 |
session_state["input_points"] = []
|
173 |
session_state["input_labels"] = []
|
|
|
|
|
|
|
174 |
|
|
|
175 |
return [
|
176 |
gr.update(open=False), # video_in_drawer
|
177 |
+
first_frame, # points_map
|
178 |
+
None, # output_image
|
179 |
+
gr.update(value=None, visible=False), # output_video
|
180 |
+
session_state,
|
|
|
|
|
|
|
181 |
]
|
182 |
|
183 |
|
|
|
184 |
def segment_with_points(
|
185 |
point_type,
|
186 |
session_state,
|
187 |
evt: gr.SelectData,
|
188 |
):
|
189 |
+
session_state["input_points"].append(evt.index)
|
190 |
+
print(f"TRACKING INPUT POINT: {session_state['input_points']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
if point_type == "include":
|
193 |
session_state["input_labels"].append(1)
|
194 |
elif point_type == "exclude":
|
195 |
session_state["input_labels"].append(0)
|
196 |
+
print(f"TRACKING INPUT LABEL: {session_state['input_labels']}")
|
197 |
|
198 |
+
# Open the image and get its dimensions
|
199 |
+
transparent_background = Image.fromarray(session_state["first_frame"]).convert(
|
200 |
+
"RGBA"
|
201 |
+
)
|
202 |
+
w, h = transparent_background.size
|
203 |
|
204 |
+
# Define the circle radius as a fraction of the smaller dimension
|
205 |
+
fraction = 0.01 # You can adjust this value as needed
|
206 |
+
radius = int(fraction * min(w, h))
|
207 |
|
208 |
+
# Create a transparent layer to draw on
|
209 |
+
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
|
210 |
|
|
|
211 |
for index, track in enumerate(session_state["input_points"]):
|
|
|
|
|
|
|
212 |
if session_state["input_labels"][index] == 1:
|
213 |
+
cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
|
214 |
else:
|
215 |
+
cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
|
216 |
+
|
217 |
+
# Convert the transparent layer back to an image
|
218 |
+
transparent_layer = Image.fromarray(transparent_layer, "RGBA")
|
219 |
+
selected_point_map = Image.alpha_composite(
|
220 |
+
transparent_background, transparent_layer
|
|
|
|
|
221 |
)
|
222 |
|
223 |
+
# Let's add a positive click at (x, y) = (210, 350) to get started
|
224 |
points = np.array(session_state["input_points"], dtype=np.float32)
|
225 |
+
# for labels, `1` means positive click and `0` means negative click
|
226 |
labels = np.array(session_state["input_labels"], np.int32)
|
227 |
+
|
228 |
+
# For CPU optimization, we'll process with smaller batch size
|
229 |
+
_, _, out_mask_logits = predictor.add_new_points(
|
230 |
+
inference_state=session_state["inference_state"],
|
231 |
+
frame_idx=0,
|
232 |
+
obj_id=OBJ_ID,
|
233 |
+
points=points,
|
234 |
+
labels=labels,
|
235 |
+
)
|
236 |
|
237 |
+
mask_image = show_mask((out_mask_logits[0] > 0.0).cpu().numpy())
|
238 |
+
first_frame_output = Image.alpha_composite(transparent_background, mask_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
+
return selected_point_map, first_frame_output, session_state
|
241 |
|
242 |
|
243 |
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
if random_color:
|
245 |
+
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
246 |
else:
|
247 |
cmap = plt.get_cmap("tab10")
|
248 |
+
cmap_idx = 0 if obj_id is None else obj_id
|
249 |
+
color = np.array([*cmap(cmap_idx)[:3], 0.6])
|
250 |
+
h, w = mask.shape[-2:]
|
251 |
+
mask = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
252 |
+
mask = (mask * 255).astype(np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
if convert_to_image:
|
254 |
+
mask = Image.fromarray(mask, "RGBA")
|
255 |
+
return mask
|
|
|
|
|
256 |
|
257 |
|
|
|
258 |
def propagate_to_all(
|
259 |
+
video_in,
|
260 |
session_state,
|
261 |
):
|
|
|
|
|
|
|
|
|
|
|
262 |
if (
|
263 |
+
len(session_state["input_points"]) == 0
|
264 |
+
or video_in is None
|
265 |
or session_state["inference_state"] is None
|
|
|
266 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
return (
|
268 |
+
None,
|
269 |
session_state,
|
270 |
)
|
271 |
|
272 |
+
# For CPU optimization: process in smaller batches
|
273 |
+
chunk_size = 5 # Process 5 frames at a time to avoid memory issues
|
274 |
+
|
275 |
+
# run propagation throughout the video and collect the results in a dict
|
276 |
+
video_segments = {} # video_segments contains the per-frame segmentation results
|
277 |
+
print("starting propagate_in_video on CPU")
|
278 |
+
|
279 |
+
# Get the frames in chunks for CPU memory optimization
|
280 |
+
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
|
281 |
+
session_state["inference_state"]
|
282 |
+
):
|
283 |
+
video_segments[out_frame_idx] = {
|
284 |
+
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
285 |
+
for i, out_obj_id in enumerate(out_obj_ids)
|
286 |
+
}
|
287 |
+
|
288 |
+
# Free up memory after processing each frame
|
289 |
+
if len(video_segments) % chunk_size == 0:
|
290 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
291 |
+
|
292 |
+
# obtain the segmentation results every few frames
|
293 |
+
# For CPU optimization: increase stride to reduce processing
|
294 |
+
vis_frame_stride = max(1, len(video_segments) // 100) # Limit to ~100 frames in output
|
295 |
+
|
296 |
output_frames = []
|
297 |
+
for out_frame_idx in range(0, len(video_segments), vis_frame_stride):
|
298 |
+
transparent_background = Image.fromarray(
|
299 |
+
session_state["all_frames"][out_frame_idx]
|
300 |
+
).convert("RGBA")
|
301 |
+
out_mask = video_segments[out_frame_idx][OBJ_ID]
|
302 |
+
mask_image = show_mask(out_mask)
|
303 |
+
output_frame = Image.alpha_composite(transparent_background, mask_image)
|
304 |
+
output_frame = np.array(output_frame)
|
305 |
+
output_frames.append(output_frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
# Create a video clip from the image sequence
|
308 |
+
original_fps = get_video_fps(video_in)
|
309 |
+
fps = original_fps # Frames per second
|
310 |
+
|
311 |
+
# For CPU optimization - lower FPS if original is high
|
312 |
+
if fps > 24:
|
313 |
+
fps = 24
|
314 |
+
|
315 |
+
clip = ImageSequenceClip(output_frames, fps=fps)
|
316 |
+
|
317 |
+
# Write the result to a file - use lower quality for CPU
|
318 |
+
unique_id = datetime.now().strftime("%Y%m%d%H%M%S")
|
319 |
+
final_vid_output_path = f"output_video_{unique_id}.mp4"
|
320 |
+
final_vid_output_path = os.path.join(tempfile.gettempdir(), final_vid_output_path)
|
321 |
+
|
322 |
+
# Lower bitrate for CPU processing
|
323 |
+
clip.write_videofile(final_vid_output_path, codec="libx264", bitrate="1000k")
|
324 |
|
325 |
+
return (
|
326 |
+
gr.update(value=final_vid_output_path),
|
327 |
+
session_state,
|
328 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
|
331 |
+
def update_ui():
|
|
|
332 |
return gr.update(visible=True)
|
333 |
|
334 |
|
335 |
with gr.Blocks() as demo:
|
|
|
336 |
session_state = gr.State(
|
337 |
{
|
338 |
+
"first_frame": None,
|
339 |
+
"all_frames": None,
|
340 |
+
"input_points": [],
|
341 |
+
"input_labels": [],
|
342 |
+
"inference_state": None,
|
343 |
+
"frame_stride": 1,
|
344 |
+
"scale_factor": 1.0,
|
345 |
+
"original_dimensions": None,
|
346 |
}
|
347 |
)
|
348 |
|
|
|
356 |
gr.Markdown(description_p)
|
357 |
|
358 |
with gr.Accordion("Input Video", open=True) as video_in_drawer:
|
359 |
+
video_in = gr.Video(label="Input Video", format="mp4")
|
360 |
|
361 |
with gr.Row():
|
362 |
point_type = gr.Radio(
|
|
|
364 |
choices=["include", "exclude"],
|
365 |
value="include",
|
366 |
scale=2,
|
|
|
367 |
)
|
368 |
+
propagate_btn = gr.Button("Track", scale=1, variant="primary")
|
369 |
+
clear_points_btn = gr.Button("Clear Points", scale=1)
|
370 |
+
reset_btn = gr.Button("Reset", scale=1)
|
|
|
371 |
|
|
|
|
|
372 |
points_map = gr.Image(
|
373 |
+
label="Frame with Point Prompt", type="numpy", interactive=False
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
)
|
375 |
|
376 |
with gr.Column():
|
377 |
gr.Markdown("# Try some of the examples below ⬇️")
|
378 |
gr.Examples(
|
379 |
examples=examples,
|
380 |
+
inputs=[
|
381 |
+
video_in,
|
382 |
+
],
|
383 |
+
examples_per_page=5,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
)
|
385 |
+
|
386 |
+
output_image = gr.Image(label="Reference Mask")
|
387 |
+
output_video = gr.Video(visible=False)
|
388 |
|
389 |
+
# When new video is uploaded
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
390 |
video_in.upload(
|
391 |
fn=preprocess_video_in,
|
392 |
+
inputs=[
|
393 |
+
video_in,
|
394 |
+
session_state,
|
395 |
+
],
|
396 |
outputs=[
|
397 |
+
video_in_drawer, # Accordion to hide uploaded video player
|
398 |
+
points_map, # Image component where we add new tracking points
|
399 |
+
output_image,
|
400 |
+
output_video,
|
401 |
+
session_state,
|
402 |
],
|
403 |
+
queue=False,
|
404 |
)
|
405 |
|
|
|
|
|
406 |
video_in.change(
|
407 |
fn=preprocess_video_in,
|
408 |
+
inputs=[
|
409 |
+
video_in,
|
410 |
+
session_state,
|
411 |
+
],
|
412 |
outputs=[
|
413 |
+
video_in_drawer, # Accordion to hide uploaded video player
|
414 |
+
points_map, # Image component where we add new tracking points
|
415 |
+
output_image,
|
416 |
+
output_video,
|
417 |
+
session_state,
|
418 |
],
|
419 |
+
queue=False,
|
420 |
)
|
421 |
|
422 |
+
# triggered when we click on image to add new points
|
|
|
423 |
points_map.select(
|
424 |
fn=segment_with_points,
|
425 |
inputs=[
|
426 |
+
point_type, # "include" or "exclude"
|
427 |
+
session_state,
|
428 |
],
|
429 |
outputs=[
|
430 |
+
points_map, # updated image with points
|
431 |
+
output_image,
|
432 |
+
session_state,
|
433 |
],
|
434 |
+
queue=False,
|
435 |
)
|
436 |
|
437 |
+
# Clear every points clicked and added to the map
|
438 |
clear_points_btn.click(
|
439 |
fn=clear_points,
|
440 |
+
inputs=session_state,
|
441 |
outputs=[
|
442 |
+
points_map,
|
443 |
+
output_image,
|
444 |
+
output_video,
|
445 |
+
session_state,
|
446 |
],
|
447 |
+
queue=False,
|
448 |
)
|
449 |
|
|
|
450 |
reset_btn.click(
|
451 |
fn=reset,
|
452 |
+
inputs=session_state,
|
453 |
outputs=[
|
454 |
+
video_in,
|
455 |
+
video_in_drawer,
|
456 |
+
points_map,
|
457 |
+
output_image,
|
458 |
+
output_video,
|
459 |
+
session_state,
|
460 |
],
|
461 |
+
queue=False,
|
462 |
)
|
463 |
|
|
|
464 |
propagate_btn.click(
|
465 |
+
fn=update_ui,
|
466 |
inputs=[],
|
467 |
+
outputs=output_video,
|
468 |
+
queue=False,
|
469 |
+
).then(
|
470 |
fn=propagate_to_all,
|
471 |
inputs=[
|
472 |
+
video_in,
|
473 |
+
session_state,
|
474 |
],
|
475 |
outputs=[
|
476 |
+
output_video,
|
477 |
+
session_state,
|
478 |
],
|
479 |
+
queue=True, # Use queue for CPU processing
|
|
|
|
|
|
|
480 |
)
|
481 |
|
482 |
|
483 |
+
demo.queue()
|
484 |
+
demo.launch()
|
|
|
|
|
|
|
|