File size: 3,408 Bytes
ba2babb
2cfba6d
27d203c
e855a91
5a8abc5
e855a91
 
8f7727c
2188326
ad95a95
8f7727c
ad95a95
8f7727c
 
 
a478a82
 
8f7727c
a478a82
 
 
 
 
8f7727c
a478a82
 
 
8f7727c
ad95a95
 
df5e760
ad95a95
e855a91
7e9bd57
 
 
 
e855a91
ba2babb
750c901
3b3bbf5
33484d2
3b3bbf5
7e9bd57
3b3bbf5
7e9bd57
3b3bbf5
 
e855a91
33484d2
2188326
 
 
09759e3
1c9db3c
 
 
 
750c901
 
1c9db3c
2188326
 
 
e855a91
 
 
 
 
 
 
 
 
 
33484d2
e855a91
 
 
09759e3
e855a91
 
 
27d203c
e855a91
 
 
09759e3
e855a91
 
 
7e9bd57
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import spaces
from peft import PeftModel
import gradio as gr
from diffusers import StableDiffusionImg2ImgPipeline
from diffusers import AutoPipelineForImage2Image
import torch
from PIL import Image
from diffusers import StableDiffusionPipeline
# Load the model
model_id = "nitrosocke/Ghibli-Diffusion"
# model_id = "openfree/flux-chatgpt-ghibli-lora"
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id, torch_dtype=torch.float32)



# # 1. 选择一个基础模型,例如 SD 1.5
# base_model_id = "runwayml/stable-diffusion-v1-5"

# # 2. 加载基础模型
# pipe = StableDiffusionPipeline.from_pretrained(
#     base_model_id,
#     torch_dtype=torch.float32
# )

# # 3. 加载 LoRA 权重
# lora_model_id = "openfree/flux-chatgpt-ghibli-lora"
# pipe.load_lora_weights(lora_model_id)

# pipe = AutoPipelineForImage2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16,token=True)
# pipe.load_lora_weights('openfree/flux-chatgpt-ghibli-lora', weight_name='flux-chatgpt-ghibli-lora.safetensors')
pipe.load_lora_weights("alvarobartt/ghibli-characters-flux-lora")


# Move pipeline to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = pipe.to(device)

# Define the inference function
@spaces.GPU
def ghibli_transform(input_image, prompt="GHBLI anime style photo", strength=0.75, guidance_scale=7.5, num_steps=50):
    if input_image is None:
        raise gr.Error("No image uploaded! Please upload an image before clicking Transform.")
    
    # Process the input image (keep it as PIL Image)
    try:
        init_image = input_image.convert("RGB").resize((768, 768))
    except Exception as e:
        raise gr.Error(f"Failed to process image: {str(e)}")
    
    # Generate the Ghibli-style image
    try:
        output = pipe(
            prompt=prompt,
            image=init_image,
            # strength=strength,
            # guidance_scale=guidance_scale,
            # num_inference_steps=num_steps  # Use the UI-provided value
            ######
            guidance_scale=10,
            prompt_strength= 0.75
            ######
        ).images[0]
    except Exception as e:
        raise gr.Error(f"Pipeline error: {str(e)}")
    
    return output

# Create the Gradio interface
with gr.Blocks(title="Ghibli Diffusion Image Transformer") as demo:
    gr.Markdown("# Ghibli Diffusion Image Transformer")
    gr.Markdown("Upload an image and transform it into Studio Ghibli style using nitrosocke/Ghibli-Diffusion!")
    
    with gr.Row():
        with gr.Column():
            input_img = gr.Image(label="Upload Image", type="pil")
            prompt = gr.Textbox(label="Prompt", value="ghibli style")
            strength = gr.Slider(0, 1, value=0.75, step=0.05, label="Strength (How much to transform)")
            guidance = gr.Slider(1, 20, value=7.5, step=0.5, label="Guidance Scale")
            num_steps = gr.Slider(10, 100, value=50, step=5, label="Inference Steps (Higher = Better Quality, Slower)")
            submit_btn = gr.Button("Transform")
        with gr.Column():
            output_img = gr.Image(label="Ghibli-Style Output")
    
    # Connect the button to the function
    submit_btn.click(
        fn=ghibli_transform,
        inputs=[input_img, prompt, strength, guidance, num_steps],
        outputs=output_img
    )

# Launch the Space with share=True for public link
demo.launch(share=True)