Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -12,13 +12,12 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
12 |
pipe = pipe.to(device)
|
13 |
|
14 |
# Define the inference function
|
15 |
-
def ghibli_transform(input_image, prompt="ghibli style", strength=0.75, guidance_scale=7.5):
|
16 |
if input_image is None:
|
17 |
raise gr.Error("No image uploaded! Please upload an image before clicking Transform.")
|
18 |
|
19 |
# Process the input image (keep it as PIL Image)
|
20 |
try:
|
21 |
-
# Ensure the image is in RGB and resized
|
22 |
init_image = input_image.convert("RGB").resize((768, 768))
|
23 |
except Exception as e:
|
24 |
raise gr.Error(f"Failed to process image: {str(e)}")
|
@@ -27,10 +26,10 @@ def ghibli_transform(input_image, prompt="ghibli style", strength=0.75, guidance
|
|
27 |
try:
|
28 |
output = pipe(
|
29 |
prompt=prompt,
|
30 |
-
image=init_image,
|
31 |
strength=strength,
|
32 |
guidance_scale=guidance_scale,
|
33 |
-
num_inference_steps=
|
34 |
).images[0]
|
35 |
except Exception as e:
|
36 |
raise gr.Error(f"Pipeline error: {str(e)}")
|
@@ -48,6 +47,7 @@ with gr.Blocks(title="Ghibli Diffusion Image Transformer") as demo:
|
|
48 |
prompt = gr.Textbox(label="Prompt", value="ghibli style")
|
49 |
strength = gr.Slider(0, 1, value=0.75, step=0.05, label="Strength (How much to transform)")
|
50 |
guidance = gr.Slider(1, 20, value=7.5, step=0.5, label="Guidance Scale")
|
|
|
51 |
submit_btn = gr.Button("Transform")
|
52 |
with gr.Column():
|
53 |
output_img = gr.Image(label="Ghibli-Style Output")
|
@@ -55,7 +55,7 @@ with gr.Blocks(title="Ghibli Diffusion Image Transformer") as demo:
|
|
55 |
# Connect the button to the function
|
56 |
submit_btn.click(
|
57 |
fn=ghibli_transform,
|
58 |
-
inputs=[input_img, prompt, strength, guidance],
|
59 |
outputs=output_img
|
60 |
)
|
61 |
|
|
|
12 |
pipe = pipe.to(device)
|
13 |
|
14 |
# Define the inference function
|
15 |
+
def ghibli_transform(input_image, prompt="ghibli style", strength=0.75, guidance_scale=7.5, num_steps=50):
|
16 |
if input_image is None:
|
17 |
raise gr.Error("No image uploaded! Please upload an image before clicking Transform.")
|
18 |
|
19 |
# Process the input image (keep it as PIL Image)
|
20 |
try:
|
|
|
21 |
init_image = input_image.convert("RGB").resize((768, 768))
|
22 |
except Exception as e:
|
23 |
raise gr.Error(f"Failed to process image: {str(e)}")
|
|
|
26 |
try:
|
27 |
output = pipe(
|
28 |
prompt=prompt,
|
29 |
+
image=init_image,
|
30 |
strength=strength,
|
31 |
guidance_scale=guidance_scale,
|
32 |
+
num_inference_steps=num_steps # Use the UI-provided value
|
33 |
).images[0]
|
34 |
except Exception as e:
|
35 |
raise gr.Error(f"Pipeline error: {str(e)}")
|
|
|
47 |
prompt = gr.Textbox(label="Prompt", value="ghibli style")
|
48 |
strength = gr.Slider(0, 1, value=0.75, step=0.05, label="Strength (How much to transform)")
|
49 |
guidance = gr.Slider(1, 20, value=7.5, step=0.5, label="Guidance Scale")
|
50 |
+
num_steps = gr.Slider(10, 100, value=50, step=5, label="Inference Steps (Higher = Better Quality, Slower)")
|
51 |
submit_btn = gr.Button("Transform")
|
52 |
with gr.Column():
|
53 |
output_img = gr.Image(label="Ghibli-Style Output")
|
|
|
55 |
# Connect the button to the function
|
56 |
submit_btn.click(
|
57 |
fn=ghibli_transform,
|
58 |
+
inputs=[input_img, prompt, strength, guidance, num_steps],
|
59 |
outputs=output_img
|
60 |
)
|
61 |
|