Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,43 +2,36 @@ import gradio as gr
|
|
2 |
from diffusers import StableDiffusionImg2ImgPipeline
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
-
import numpy as np
|
6 |
|
7 |
# Load the model
|
8 |
model_id = "nitrosocke/Ghibli-Diffusion"
|
9 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
|
10 |
|
|
|
|
|
|
|
|
|
11 |
# Define the inference function
|
12 |
def ghibli_transform(input_image, prompt="ghibli style", strength=0.75, guidance_scale=7.5):
|
13 |
-
print(f"Input received: {input_image is not None}")
|
14 |
-
print(f"Input type: {type(input_image)}")
|
15 |
if input_image is None:
|
16 |
raise gr.Error("No image uploaded! Please upload an image before clicking Transform.")
|
17 |
|
18 |
-
# Process the input image
|
19 |
try:
|
20 |
-
|
21 |
-
init_image = input_image.resize((768, 768))
|
22 |
-
print(f"Converted init_image size: {init_image.size}, mode: {init_image.mode}")
|
23 |
-
except AttributeError as e:
|
24 |
-
raise gr.Error(f"Input is not a valid image: {str(e)}")
|
25 |
except Exception as e:
|
26 |
raise gr.Error(f"Failed to process image: {str(e)}")
|
27 |
|
28 |
-
# Convert to NumPy array as a workaround
|
29 |
-
init_image_np = np.array(init_image)
|
30 |
-
print(f"Converted to NumPy: {type(init_image_np)}, shape: {init_image_np.shape}")
|
31 |
-
|
32 |
# Generate the Ghibli-style image
|
33 |
try:
|
34 |
output = pipe(
|
35 |
prompt=prompt,
|
36 |
-
init_image
|
37 |
strength=strength,
|
38 |
guidance_scale=guidance_scale,
|
39 |
num_inference_steps=50
|
40 |
).images[0]
|
41 |
-
print("Pipeline executed successfully")
|
42 |
except Exception as e:
|
43 |
raise gr.Error(f"Pipeline error: {str(e)}")
|
44 |
|
@@ -66,5 +59,5 @@ with gr.Blocks(title="Ghibli Diffusion Image Transformer") as demo:
|
|
66 |
outputs=output_img
|
67 |
)
|
68 |
|
69 |
-
# Launch the Space
|
70 |
-
demo.launch()
|
|
|
2 |
from diffusers import StableDiffusionImg2ImgPipeline
|
3 |
import torch
|
4 |
from PIL import Image
|
|
|
5 |
|
6 |
# Load the model
|
7 |
model_id = "nitrosocke/Ghibli-Diffusion"
|
8 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
|
9 |
|
10 |
+
# Move pipeline to GPU if available
|
11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
pipe = pipe.to(device)
|
13 |
+
|
14 |
# Define the inference function
|
15 |
def ghibli_transform(input_image, prompt="ghibli style", strength=0.75, guidance_scale=7.5):
|
|
|
|
|
16 |
if input_image is None:
|
17 |
raise gr.Error("No image uploaded! Please upload an image before clicking Transform.")
|
18 |
|
19 |
+
# Process the input image (keep it as PIL Image)
|
20 |
try:
|
21 |
+
# Ensure the image is in RGB and resized
|
22 |
+
init_image = input_image.convert("RGB").resize((768, 768))
|
|
|
|
|
|
|
23 |
except Exception as e:
|
24 |
raise gr.Error(f"Failed to process image: {str(e)}")
|
25 |
|
|
|
|
|
|
|
|
|
26 |
# Generate the Ghibli-style image
|
27 |
try:
|
28 |
output = pipe(
|
29 |
prompt=prompt,
|
30 |
+
image=init_image, # Pass PIL Image directly
|
31 |
strength=strength,
|
32 |
guidance_scale=guidance_scale,
|
33 |
num_inference_steps=50
|
34 |
).images[0]
|
|
|
35 |
except Exception as e:
|
36 |
raise gr.Error(f"Pipeline error: {str(e)}")
|
37 |
|
|
|
59 |
outputs=output_img
|
60 |
)
|
61 |
|
62 |
+
# Launch the Space with share=True for public link
|
63 |
+
demo.launch(share=True)
|