Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,33 +4,36 @@ import torch
|
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
6 |
|
7 |
-
# Load the model
|
8 |
model_id = "nitrosocke/Ghibli-Diffusion"
|
9 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
|
10 |
|
11 |
# Define the inference function
|
12 |
def ghibli_transform(input_image, prompt="ghibli style", strength=0.75, guidance_scale=7.5):
|
13 |
-
# Check
|
|
|
14 |
if input_image is None:
|
15 |
raise gr.Error("Please upload an image before clicking Transform!")
|
16 |
|
17 |
-
#
|
18 |
-
if not isinstance(input_image, np.ndarray):
|
19 |
-
raise gr.Error("Input image format is invalid. Expected a NumPy array.")
|
20 |
-
|
21 |
try:
|
22 |
-
init_image =
|
|
|
23 |
except Exception as e:
|
24 |
raise gr.Error(f"Failed to process image: {str(e)}")
|
25 |
|
26 |
# Generate the Ghibli-style image
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
34 |
|
35 |
return output
|
36 |
|
@@ -41,7 +44,7 @@ with gr.Blocks(title="Ghibli Diffusion Image Transformer") as demo:
|
|
41 |
|
42 |
with gr.Row():
|
43 |
with gr.Column():
|
44 |
-
input_img = gr.Image(label="Upload Image", type="
|
45 |
prompt = gr.Textbox(label="Prompt", value="ghibli style")
|
46 |
strength = gr.Slider(0, 1, value=0.75, step=0.05, label="Strength (How much to transform)")
|
47 |
guidance = gr.Slider(1, 20, value=7.5, step=0.5, label="Guidance Scale")
|
|
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
6 |
|
7 |
+
# Load the model
|
8 |
model_id = "nitrosocke/Ghibli-Diffusion"
|
9 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
|
10 |
|
11 |
# Define the inference function
|
12 |
def ghibli_transform(input_image, prompt="ghibli style", strength=0.75, guidance_scale=7.5):
|
13 |
+
# Debug: Check input type and value
|
14 |
+
print(f"Input type: {type(input_image)}")
|
15 |
if input_image is None:
|
16 |
raise gr.Error("Please upload an image before clicking Transform!")
|
17 |
|
18 |
+
# Since input is now PIL, just resize and ensure RGB
|
|
|
|
|
|
|
19 |
try:
|
20 |
+
init_image = input_image.resize((768, 768)).convert("RGB")
|
21 |
+
print(f"Converted to PIL Image: {type(init_image)}")
|
22 |
except Exception as e:
|
23 |
raise gr.Error(f"Failed to process image: {str(e)}")
|
24 |
|
25 |
# Generate the Ghibli-style image
|
26 |
+
try:
|
27 |
+
output = pipe(
|
28 |
+
prompt=prompt,
|
29 |
+
init_image=init_image,
|
30 |
+
strength=strength,
|
31 |
+
guidance_scale=guidance_scale,
|
32 |
+
num_inference_steps=50
|
33 |
+
).images[0]
|
34 |
+
print("Pipeline executed successfully")
|
35 |
+
except Exception as e:
|
36 |
+
raise gr.Error(f"Pipeline error: {str(e)}")
|
37 |
|
38 |
return output
|
39 |
|
|
|
44 |
|
45 |
with gr.Row():
|
46 |
with gr.Column():
|
47 |
+
input_img = gr.Image(label="Upload Image", type="pil") # Changed to "pil"
|
48 |
prompt = gr.Textbox(label="Prompt", value="ghibli style")
|
49 |
strength = gr.Slider(0, 1, value=0.75, step=0.05, label="Strength (How much to transform)")
|
50 |
guidance = gr.Slider(1, 20, value=7.5, step=0.5, label="Guidance Scale")
|