Spaces:
Sleeping
Sleeping
File size: 6,175 Bytes
40f8030 008cbc7 bedc31f d7039db 008cbc7 bedc31f b39af27 5fcb1c0 313ffa3 d640ea6 f7ae4d3 d7039db 9c8d7b2 ccb396a b39af27 4036c1c b39af27 9c8d7b2 ccb396a b39af27 9c8d7b2 be405fd 4036c1c b39af27 9c8d7b2 b39af27 9c8d7b2 4036c1c 9c8d7b2 b39af27 9c8d7b2 ccb396a 9c8d7b2 cae59a3 313ffa3 ccb396a 055398c 9c8d7b2 d640ea6 008cbc7 9c8d7b2 cae59a3 008cbc7 9c8d7b2 008cbc7 a482377 40f8030 942efe4 40f8030 942efe4 a482377 008cbc7 b39af27 008cbc7 9c8d7b2 008cbc7 9c8d7b2 b39af27 553dc41 9c8d7b2 b39af27 553dc41 9c8d7b2 b39af27 9c8d7b2 b39af27 9c8d7b2 b39af27 9c8d7b2 b39af27 9c8d7b2 008cbc7 2be2025 008cbc7 9c8d7b2 d7039db 9c8d7b2 b39af27 9c8d7b2 4e440e2 be405fd 9c8d7b2 be405fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import pickle
import pandas as pd
import shap
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
# Load the XGBoost model from Pickle
loaded_model = pickle.load(open("h22_xgb_Final(2).pkl", 'rb'))
# Setup SHAP Explainer for XGBoost (Do not change this)
explainer = shap.Explainer(loaded_model)
def safe_convert(value, default, min_val, max_val):
try:
num = float(value)
return max(min_val, min(num, max_val)) # Ensure within range
except (TypeError, ValueError):
return default # Use default if conversion fails
# Create the main function for the model
def main_func(Department, ChainScale, SupportiveGM, Merit, LearningDevelopment, WorkEnvironment, Engagement, WellBeing):
ChainScale_mapping = {
'Luxury': 1,
'Upper Midscale': 2,
'Upper Upscale': 3,
'Upscale': 4,
'Independent': 5,
}
department_mapping = {
"Guest Services": 1,
"Food and Beverage": 2,
"Housekeeping": 3,
"Front Office Operations": 4,
"Guest Activities": 5,
}
LearningDevelopment = safe_convert(LearningDevelopment, 3.0, 1, 5)
SupportiveGM = safe_convert(SupportiveGM, 3.0, 1, 5)
Merit = safe_convert(Merit, 3.0, 1, 5)
WorkEnvironment = safe_convert(WorkEnvironment, 3.0, 1, 5)
Engagement = safe_convert(Engagement, 3.0, 1, 5)
WellBeing = safe_convert(WellBeing, 3.0, 1, 5)
new_row = pd.DataFrame({
'SupportiveGM': [SupportiveGM],
'Merit': [Merit],
'LearningDevelopment': [LearningDevelopment],
'WorkEnvironment': [WorkEnvironment],
'Engagement': [Engagement],
'WellBeing': [WellBeing]
}).astype(float)
# Predict probabilities
prob = loaded_model.predict_proba(new_row)
if prob.shape[1] == 2:
leave_prob = float(prob[0][0])
stay_prob = float(prob[0][1])
else:
leave_prob = float(prob[0])
stay_prob = 1 - leave_prob
# Generate SHAP values
shap_values = explainer(new_row)
fig, ax = plt.subplots(figsize=(8, 4))
shap.waterfall_plot(shap.Explanation(
values=shap_values.values[0],
base_values=shap_values.base_values[0],
data=new_row.iloc[0]
))
plt.tight_layout()
local_plot = plt.gcf()
plt.close()
return {"Leave": leave_prob, "Stay": stay_prob}, local_plot
# Create the UI
title = "**Mod 3 Team 5: Employee Turnover Predictor & Interpreter**"
description1 = """
This app evaluates six key factors affecting employee satisfaction—Supportive GM, Merit, Learning & Development, Work Environment, Engagement, and Well-Being—to predict whether an employee is likely to stay with Hilton or leave.
The app provides two key outputs:
**Predicted Probability**
A likelihood score indicating whether an employee will stay or leave.
**SHAP Force Plot**
A dynamic visualization that illustrates how each factor influences the prediction, helping to pinpoint the most impactful drivers of employee retention.
Designed for HR teams at both departmental and hotel chain levels, this tool delivers data-driven insights to improve employee experience and retention strategies across Hilton properties.
"""
description2 = """
To use the app, adjust the values of the employee satisfaction factors and click on Analyze.
"""
with gr.Blocks(title=title) as demo:
gr.Markdown(f"## {title}")
gr.Markdown(description1)
gr.Markdown("""---""")
gr.Markdown(description2)
gr.Markdown("""---""")
with gr.Row():
with gr.Column():
Department = gr.Radio(
["Guest Services", "Food and Beverage", "Housekeeping", "Front Office Operations", "Guest Activities"],
label="Department",
value="Guest Services"
)
ChainScale = gr.Dropdown(
["Luxury", "Upper Midscale", "Upper Upscale", "Upscale", "Independent"],
label="ChainScale (Example)",
value="Upper Upscale"
)
SupportiveGM = gr.Slider(
label="SupportiveGM Score", minimum=1, maximum=5, value=4, step=0.1,
interactive=True
)
Merit = gr.Slider(
label="Merit Score", minimum=1, maximum=5, value=4, step=0.1,
interactive=True
)
LearningDevelopment = gr.Slider(
label="Learning and Development Score", minimum=1, maximum=5, value=4, step=0.1,
interactive=True
)
WorkEnvironment = gr.Slider(
label="Work Environment Score", minimum=1, maximum=5, value=4, step=0.1,
interactive=True
)
Engagement = gr.Slider(
label="Engagement Score", minimum=1, maximum=5, value=4, step=0.1,
interactive=True
)
WellBeing = gr.Slider(
label="Well-Being Score", minimum=1, maximum=5, value=4, step=0.1,
interactive=True
)
submit_btn = gr.Button("Analyze")
with gr.Column(visible=True, scale=1, min_width=600) as output_col:
label = gr.Label(label="Predicted Intent to Stay vs Leave")
local_plot = gr.Plot(label='SHAP Waterfall Analysis')
submit_btn.click(
main_func,
[Department, ChainScale, SupportiveGM, Merit, LearningDevelopment, WorkEnvironment, Engagement, WellBeing],
[label, local_plot],
api_name="Employee_Turnover"
)
gr.Markdown("### Click on any of the examples below to see how it works:")
gr.Examples(
[
["Guest Services", "Upper Upscale", 4.1, 3.7, 3.9, 4.2, 4.4, 4.3],
["Food and Beverage", "Upper Upscale", 3.9, 3.7, 4.1, 4.3, 4.5, 4.4],
["Housekeeping", "Upper Upscale", 4.3, 4.0, 4.3, 4.4, 4.5, 4.4],
],
[Department, ChainScale, SupportiveGM, Merit, LearningDevelopment, WorkEnvironment, Engagement, WellBeing],
[label, local_plot],
main_func,
cache_examples=True
)
demo.launch() |