Mpodszus commited on
Commit
4036c1c
·
verified ·
1 Parent(s): be405fd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -12
app.py CHANGED
@@ -1,4 +1,3 @@
1
- import pickle
2
  import pandas as pd
3
  import shap
4
  import gradio as gr
@@ -21,6 +20,7 @@ def safe_convert(value, default, min_val, max_val):
21
  # Create the main function for the model
22
  def main_func(Department, ChainScale, SupportiveGM, Merit, LearningDevelopment, WorkEnvironment, Engagement, WellBeing):
23
 
 
24
  ChainScale_mapping = {
25
  'Luxury': 1,
26
  'Upper Midscale': 2,
@@ -36,12 +36,8 @@ def main_func(Department, ChainScale, SupportiveGM, Merit, LearningDevelopment,
36
  "Front Office Operations": 4,
37
  "Guest Activities": 5,
38
  }
39
-
40
- # Convert inputs
41
- Department = department_mapping.get(Department, 1) # Default to "Guest Services"
42
- ChainScale = ChainScale_mapping.get(ChainScale, 3) # Default to "Upper Upscale"
43
 
44
- # Ensure numeric input validity
45
  LearningDevelopment = safe_convert(LearningDevelopment, 3.0, 1, 5)
46
  SupportiveGM = safe_convert(SupportiveGM, 3.0, 1, 5)
47
  Merit = safe_convert(Merit, 3.0, 1, 5)
@@ -49,10 +45,8 @@ def main_func(Department, ChainScale, SupportiveGM, Merit, LearningDevelopment,
49
  Engagement = safe_convert(Engagement, 3.0, 1, 5)
50
  WellBeing = safe_convert(WellBeing, 3.0, 1, 5)
51
 
52
- # Create DataFrame for prediction
53
  new_row = pd.DataFrame({
54
- 'Department': [Department],
55
- 'ChainScale': [ChainScale],
56
  'SupportiveGM': [SupportiveGM],
57
  'Merit': [Merit],
58
  'LearningDevelopment': [LearningDevelopment],
@@ -162,15 +156,13 @@ with gr.Blocks(title=title) as demo:
162
 
163
  gr.Examples(
164
  [
165
- ["Guest Services", "Upper Upscale", 4.1, 3.7, 3.9, 4.2, 4.4, 4.3],
166
  ["Food and Beverage", "Upper Upscale", 3.9, 3.7, 4.1, 4.3, 4.5, 4.4],
167
  ["Housekeeping", "Upper Upscale", 4.3, 4.0, 4.3, 4.4, 4.5, 4.4],
168
- ["Guest Services", "Upper Upscale", 5.0, 4.0, 4.3, 4.4, 5.0, 5.0]
169
  ],
170
  [Department, ChainScale, SupportiveGM, Merit, LearningDevelopment, WorkEnvironment, Engagement, WellBeing],
171
  [label, local_plot],
172
  main_func,
173
  cache_examples=True
174
  )
175
-
176
  demo.launch()
 
 
1
  import pandas as pd
2
  import shap
3
  import gradio as gr
 
20
  # Create the main function for the model
21
  def main_func(Department, ChainScale, SupportiveGM, Merit, LearningDevelopment, WorkEnvironment, Engagement, WellBeing):
22
 
23
+
24
  ChainScale_mapping = {
25
  'Luxury': 1,
26
  'Upper Midscale': 2,
 
36
  "Front Office Operations": 4,
37
  "Guest Activities": 5,
38
  }
 
 
 
 
39
 
40
+
41
  LearningDevelopment = safe_convert(LearningDevelopment, 3.0, 1, 5)
42
  SupportiveGM = safe_convert(SupportiveGM, 3.0, 1, 5)
43
  Merit = safe_convert(Merit, 3.0, 1, 5)
 
45
  Engagement = safe_convert(Engagement, 3.0, 1, 5)
46
  WellBeing = safe_convert(WellBeing, 3.0, 1, 5)
47
 
48
+
49
  new_row = pd.DataFrame({
 
 
50
  'SupportiveGM': [SupportiveGM],
51
  'Merit': [Merit],
52
  'LearningDevelopment': [LearningDevelopment],
 
156
 
157
  gr.Examples(
158
  [
159
+ ["Guest Service", "Upper Upscale", 4.1, 3.7, 3.9, 4.2, 4.4, 4.3],
160
  ["Food and Beverage", "Upper Upscale", 3.9, 3.7, 4.1, 4.3, 4.5, 4.4],
161
  ["Housekeeping", "Upper Upscale", 4.3, 4.0, 4.3, 4.4, 4.5, 4.4],
 
162
  ],
163
  [Department, ChainScale, SupportiveGM, Merit, LearningDevelopment, WorkEnvironment, Engagement, WellBeing],
164
  [label, local_plot],
165
  main_func,
166
  cache_examples=True
167
  )
 
168
  demo.launch()