Mpodszus commited on
Commit
d7039db
·
verified ·
1 Parent(s): bedc31f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -2
app.py CHANGED
@@ -1,9 +1,22 @@
1
  import gradio as gr
 
 
2
 
 
 
 
 
 
3
  def predict(SupportiveGM, Merit, LearningDevelopment, WorkEnvironmente, Engagement, WellBeing, ChainScale):
4
- # Replace this with your model logic
5
- return f"Received: {SupportiveGM}, {Merit}, {LearningDevelopment}, {WorkEnvironmente}, {Engagement}, {WellBeing}, {ChainScale}"
 
 
 
 
 
6
 
 
7
  iface = gr.Interface(
8
  fn=predict,
9
  inputs=["number"] * 7,
@@ -14,3 +27,4 @@ iface = gr.Interface(
14
 
15
  if __name__ == "__main__":
16
  iface.launch()
 
 
1
  import gradio as gr
2
+ import pickle
3
+ import numpy as np
4
 
5
+ # Load the trained model
6
+ with open("clf.pkl", "rb") as f:
7
+ clf = pickle.load(f)
8
+
9
+ # Define the prediction function
10
  def predict(SupportiveGM, Merit, LearningDevelopment, WorkEnvironmente, Engagement, WellBeing, ChainScale):
11
+ # Convert inputs into a NumPy array
12
+ input_data = np.array([[SupportiveGM, Merit, LearningDevelopment, WorkEnvironmente, Engagement, WellBeing, ChainScale]])
13
+
14
+ # Make prediction using the model
15
+ prediction = clf.predict(input_data)
16
+
17
+ return f"Predicted Turnover Probability: {prediction[0]}"
18
 
19
+ # Create the Gradio interface
20
  iface = gr.Interface(
21
  fn=predict,
22
  inputs=["number"] * 7,
 
27
 
28
  if __name__ == "__main__":
29
  iface.launch()
30
+