Spaces:
Running
Running
File size: 31,981 Bytes
78bf448 ef59b57 78bf448 ef59b57 5e8fc79 ef59b57 78bf448 ef59b57 78bf448 ef59b57 78bf448 ef59b57 78bf448 ef59b57 78bf448 ef59b57 78bf448 bd27c9a 78bf448 ef59b57 78bf448 77b586d 78bf448 bd27c9a 78bf448 ef59b57 78bf448 ef59b57 78bf448 9440539 78bf448 3cb0b27 78bf448 ef59b57 bd27c9a ef59b57 78bf448 4c0fc77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 |
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>PyTorch × Transformers Journey</title>
<!-- Google Fonts -->
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;800&family=Fira+Code:wght@400;600&display=swap" rel="stylesheet" />
<!-- Reveal.js core & dark theme base -->
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/reveal.js@5/dist/reset.css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/reveal.js@5/dist/reveal.css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/reveal.js@5/dist/theme/black.css" id="theme" />
<!-- Highlight.js -->
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/styles/github-dark.min.css" />
<!-- Animations -->
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/animate.css@4/animate.min.css" />
<style>
:root {
--accent-primary: #ee4c2c; /* PyTorch orange‑red */
--accent-secondary: #ffb347; /* lighter highlight */
--bg-gradient-start: #1b1b1b;
--bg-gradient-end: #242424;
}
html, body { font-family: 'Inter', sans-serif; }
.reveal .slides {
background: linear-gradient(135deg, var(--bg-gradient-start), var(--bg-gradient-end));
}
.reveal h1, .reveal h2, .reveal h3 { color: var(--accent-primary); font-weight: 800; letter-spacing: -0.5px; }
.reveal pre code { font-family: 'Fira Code', monospace; font-size: 0.75em; }
.reveal section img, .reveal section svg { border-radius: 1rem; box-shadow: 0 8px 22px rgba(0,0,0,0.4); }
.fragment.highlight-current-blue.visible { color: var(--accent-secondary) !important; }
/* slide-density patch */
.reveal h1 { font-size: 2.6rem; line-height: 1.1; }
.reveal h2 { font-size: 1.9rem; line-height: 1.15; }
.reveal h3 { font-size: 1.4rem; line-height: 1.2; }
.reveal p, .reveal li { font-size: 1.7rem; line-height: 1.35; }
.reveal pre code { font-size: 0.67em; }
/* Make <strong> more vibrant and aligned with the accent */
.reveal strong {
color: var(--accent-secondary); /* orange highlight */
font-weight: 800;
}
/* Make <code> more obvious: change background, font, and padding */
.reveal code {
background: rgba(255, 255, 255, 0.1);
color: #ffd080;
padding: 0.15em 0.4em;
border-radius: 0.3em;
font-family: 'Fira Code', monospace;
font-size: 0.95em;
}
@media (max-width: 1024px) { .reveal h1{font-size:2.2rem;} .reveal h2{font-size:1.6rem;} }
.reveal table td, .reveal table th { font-size: 0.85rem; padding: 4px 8px; }
body::after {
content: "";
position: fixed;
bottom: 3.5em;
left: 3.5em;
width: 270px; /* desired size */
height: 117px;
background-image: url(assets/py2.png);
background-size: contain;
background-repeat: no-repeat;
z-index: 9999;
box-shadow: 5px 5px 10px #000;
pointer-events: none;
}
</style>
</head>
<body>
<div class="reveal">
<div class="slides">
<section>
<img src="assets/screenpage2.png" alt="Full slide image"
style="
width:120%;
height:110%;
object-fit:cover;
margin-left:-2.5%;
margin-top:-2.5%;
" /> <!-- 1 · Opening -->
</section>
<section data-auto-animate>
<div style="display: flex; align-items: center; justify-content: center; gap: 1.2rem; margin-bottom: 1rem;" class="animate__animated animate__fadeInDown">
<img src="assets/transparent_PyTorch.png" alt="PyTorch Logo" style="height: 48px;" />
<span style="color: white; font-size: 2.4rem; font-weight: 700;">×</span>
<img src="assets/head_logo.svg" alt="Transformers Logo" style="height: 48px;" />
</div>
<h1 class="animate__animated animate__fadeInDown">PyTorch × Transformers Journey</h1>
<h3 class="animate__animated animate__fadeInDown animate__delay-1s">Pythonicity, Autodiff & Modularity in Modern AI</h3>
<p class="animate__animated animate__fadeInUp animate__delay-2s">Pablo Montalvo‑Leroux · ML Engineer @ Hugging Face</p>
</section>
<section>
<h2>2016‑2018: Backprop & Birth Pangs</h2>
<p>The journey began with uncertainty: back in 2016, machine learning was far from standardized. Tools like Theano and CNTK were fading, and many of us—myself included—were jumping framework to framework. It was a time of raw experimentation.</p>
<ul>
<li>Frameworks were in flux; few stuck around.</li>
<li>MLPs evolved to RNNs and LSTMs.</li>
<li><strong>2017, Attention, then 2018: BERT</strong> arrives, blowing the roof off what's possible.</li>
</ul>
<p class="fragment">But reproducing results remained frustratingly difficult.</p>
</section>
<section>
<h2>Transformers × PyTorch: Reproducibility</h2>
<p>That all changed with <code>pytorch-pretrained-bert</code>, the predecessor to Transformers. Suddenly, the magic of BERT was available in an interface that made sense.</p>
<div style="display: flex; gap: 2rem; justify-content: space-between; margin-top: 2rem;">
<div style="flex: 1; background: #2d2d2d; padding: 1.2rem; border-radius: 1rem; box-shadow: 0 4px 12px rgba(0,0,0,0.3);">
<p style="font-weight: 800; color: var(--accent-primary); margin-bottom: 0.6rem;">
🧩 Simpler Interface
</p>
<p>No static graphs, just Python functions and PyTorch modules.</p>
</div>
<div style="flex: 1; background: #2d2d2d; padding: 1.2rem; border-radius: 1rem; box-shadow: 0 4px 12px rgba(0,0,0,0.3);">
<p style="font-weight: 800; color: var(--accent-primary); margin-bottom: 0.6rem;">
✨ Hackability
</p>
<p>Readable, hackable code meant results could be shared, reproduced, improved.</p>
</div>
<div style="flex: 1; background: #2d2d2d; padding: 1.2rem; border-radius: 1rem; box-shadow: 0 4px 12px rgba(0,0,0,0.3);">
<p style="font-weight: 800; color: var(--accent-primary); margin-bottom: 0.6rem;">
🚀 Community Shift
</p>
<p>This shifted the research community towards PyTorch.</p>
</div>
</div>
</section>
<!-- 3 · Static vs Dynamic Graphs -->
<section>
<h2>Static vs Dynamic Graphs</h2>
<p>Static graphs require you to compile, wait, and cross fingers the bug reproduces.</p>
<p>Dynamic graphs mean you can drop <code>pdb.set_trace()</code> anywhere and continue iterating.</p>
<p>Nowadays <code>torch.compile</code> gives the best of both worlds: write dynamically, ship something ahead‑of‑time optimised.</p>
</section>
<!-- 4 · Dynamic Graphs Enabled Contribution -->
<section>
<h2>Dynamic Graphs Enabled Contribution</h2>
<ul>
<li>Developers debug at line‑rate — no cold‑start recompiles.</li>
<li>Pull‑requests remained reproducible overnight, which accelerated trust.</li>
<li>Static‑graph alternatives stalled and the community consolidated around PyTorch.</li>
</ul>
</section>
<section>
<h2>Clone the Paper Tonight → Tweak Tomorrow</h2>
<p>PyTorch lowered the barrier to implementation — Transformers built on top of that simplicity.</p>
<div style="display: flex; gap: 1.5rem; margin-top: 2rem;">
<div style="flex: 1; background: #2d2d2d; padding: 1.2rem; border-radius: 1rem; box-shadow: 0 4px 12px rgba(0,0,0,0.3);">
<p style="font-weight: 800; color: var(--accent-primary); margin-bottom: 0.5rem;">🔍 Live Debugging</p>
<p>2018: BERT fine-tunes meant <code>print(tensor)</code>, not <em>recompile & hope</em>.</p>
</div>
<div style="flex: 1; background: #2d2d2d; padding: 1.2rem; border-radius: 1rem; box-shadow: 0 4px 12px rgba(0,0,0,0.3);">
<p style="font-weight: 800; color: var(--accent-primary); margin-bottom: 0.5rem;">🤝 Fast Review</p>
<p>Patches were understandable and reproducible — merged quickly, verified quickly.</p>
</div>
<div style="flex: 1; background: #2d2d2d; padding: 1.2rem; border-radius: 1rem; box-shadow: 0 4px 12px rgba(0,0,0,0.3);">
<p style="font-weight: 800; color: var(--accent-primary); margin-bottom: 0.5rem;">⚡ Fast Iteration</p>
<p>Experiments shifted from <em>weeks</em> to <strong>hours</strong> — feedback cycles accelerated.</p>
</div>
</div>
</section>
<!-- 6 · One Model · One File -->
<section>
<h2>“One Model · One File” — Why it Matters</h2>
<pre><code class="language-python" data-trim data-noescape>
# modeling_bert.py — single source of truth
class BertConfig(PretrainedConfig):
...
class BertSelfAttention(nn.Module):
...
class BertLayer(nn.Module):
...
class BertModel(PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.embeddings = BertEmbeddings(config)
self.encoder = nn.ModuleList(
[BertLayer(config) for _ in range(config.num_hidden_layers)]
)
self.init_weights()
</code></pre>
<ul>
<li>All layers, forward pass, and <code>from_pretrained()</code> logic live together.</li>
<li>No cross‑file inheritance maze — copy to Colab, hack, and run.</li>
<li>Reviewers diff one file; merge time dropped from days to hours.</li>
</ul>
</section>
<!-- 8 · Paradigms come at a cost -->
<section>
<h2>Paradigms Come at a Cost</h2>
<div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 1.5rem; margin-top: 2rem;">
<div style="background: #2d2d2d; padding: 1.2rem; border-radius: 1rem; box-shadow: 0 4px 12px rgba(0,0,0,0.3);">
<p style="font-weight: 800; color: var(--accent-primary); margin-bottom: 0.5rem;">📈 Community Growth</p>
<p>The scientific and engineering ML community thrived with Transformers.</p>
</div>
<div style="background: #2d2d2d; padding: 1.2rem; border-radius: 1rem; box-shadow: 0 4px 12px rgba(0,0,0,0.3);">
<p style="font-weight: 800; color: var(--accent-primary); margin-bottom: 0.5rem;">🔥 PyTorch Synergy</p>
<p>Transformers and PyTorch grew together — adoption fed back into both ecosystems.</p>
</div>
<div style="background: #2d2d2d; padding: 1.2rem; border-radius: 1rem; box-shadow: 0 4px 12px rgba(0,0,0,0.3);">
<p style="font-weight: 800; color: var(--accent-primary); margin-bottom: 0.5rem;">🛠️ Maintenance Pressure</p>
<p>We duplicate code on purpose — to preserve clarity, portability, and hackability.</p>
</div>
<div class="fragment" style="background: #2d2d2d; padding: 1.2rem; border-radius: 1rem; box-shadow: 0 4px 12px rgba(0,0,0,0.3);">
<p style="font-weight: 800; color: var(--accent-primary); margin-bottom: 0.5rem;">🧬 Pythonic Modularity</p>
<p>The <strong>Modularity</strong> of python is never far :)</p>
</div>
</div>
</section>
<!-- 8 · Back to Python: Mary Shelley Mode -->
<section>
<h2>Back to Python: Modular “Mary Shelley” Mode</h2>
<p>Compose new blocks via subclass & override.</p>
<pre><code class="language-python" data-trim>
class GlmMLP(Phi3MLP):
pass
class GlmAttention(LlamaAttention):
def __init__(self, config, layer_idx=None):
super().__init__(config, layer_idx)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim,
config.hidden_size, bias=False)
class GlmForCausalLM(LlamaForCausalLM):
pass
</code></pre>
<p>AST expands → full modeling file, still hackable.</p>
</section>
<section>
<h2>Back to Python: It's alive!</h2>
<p>All the code becomes runnable and a self-contained model definition</p>
<pre><code class="language-python" data-trim>
class GlmMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.activation_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
up_states = self.gate_up_proj(hidden_states)
gate, up_states = up_states.chunk(2, dim=-1)
up_states = up_states * self.activation_fn(gate)
return self.down_proj(up_states)
class GlmAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: GlmConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
@use_kernel_forward_from_hub("RMSNorm")
class GlmRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
GlmRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class GlmRotaryEmbedding(nn.Module):
def __init__(self, config: GlmConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
</code></pre>
<p> We keep hackability while reconnecting with Python working paradigms.</p>
</section>
<!-- 9 · Logit Debugger -->
<section>
<h2>Logit Debugger: Trust but Verify</h2>
<ul>
<li>Hook every <code>nn.Module</code>; dump logits layer‑by‑layer</li>
<li>Spot ε‑level drifts (LayerNorm, FP16 underflow…)</li>
<li>JSON traces diffable in CI</li>
<img data-src="assets/visual_debugger.png" alt="Visual debugger" />
</ul>
</section>
<!-- 10 · DTensor & TP API -->
<section>
<h2>DTensor & Tensor‑Parallel API</h2>
<p>Before, changing to Tensor Parallel meant changing the code.</p>
<pre><code class="language-python" data-trim data-noescape>
from transformers.modeling_utils import PreTrainedModel
from megatron.model import ColumnParallelLinear, RowParallelLinear
class MyTPModel(PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.q_proj = ColumnParallelLinear(config.hidden_size, config.hidden_size)
self.k_proj = ColumnParallelLinear(config.hidden_size, config.hidden_size)
self.v_proj = ColumnParallelLinear(config.hidden_size, config.hidden_size)
self.o_proj = RowParallelLinear(config.hidden_size, config.hidden_size)
</code></pre>
</section>
<!-- 11 · Zero‑Config Parallelism -->
<section>
<h2>Zero‑Config Tensor Parallelism</h2>
<p>The <code>tp_plan</code> JSON keeps model code pristine and declarative.</p>
<pre><code class="language-json" data-trim data-noescape>{
"layer.*.self_attn.q_proj": "colwise",
"layer.*.self_attn.k_proj": "colwise",
"layer.*.self_attn.v_proj": "colwise",
"layer.*.self_attn.o_proj": "rowwise"
}</code></pre>
<p>Translated to</p>
<pre><code class="language-python" data-trim data-noescape>
def translate_to_torch_parallel_style(style: str):
if style == "colwise":
return ColwiseParallel()
elif style == "rowwise":
return RowwiseParallel()
# …
</code></pre>
<p>One JSON → 100 B param model on 8 GPUs. Change the plan, not the code.</p>
</section>
<!-- 12 · Cache Allocator -->
<section>
<h2>Improvements, Load faster & stronger: Cache Allocator</h2>
<p>0‑copy weight sharding, single cuda Malloc</p>
<p>Faster model loads, even for a 50-shards 100B model (when we were sprinting Llama4!)</p>
<img data-src="assets/fastload.png" alt="SurprisedLewis" />
</section>
<!-- 15 · Why Python wins -->
<section>
<h2>Why Python Wins</h2>
<ul>
<li>Low entry barrier (although hard to master)</li>
<li>High‑level semantics express low‑level intent</li>
<li>Seamless C++/Rust extension points</li>
</ul>
</section>
<!-- 16 · Where Python can bite -->
<section>
<h2>Where Python can bite 🐍</h2>
<ul>
<li>Interpreter overhead on microkernels (token‑by‑token decode)</li>
<li>GIL can throttle async host‑side work</li>
<li>Easy to under‑optimise code fresh out of the lab</li>
</ul>
<p class="fragment">All of these can be mitigated: Triton, compiled custom ops, compile‑time fallback, <strong>custom kernels</strong></p>
</section>
<!-- 17 · Kernel Hub -->
<section>
<h2>Kernel Hub: Optimised Ops from the Community</h2>
<p>Kernel Hub lets any Python program <em>download and hot‑load</em> compiled CUDA/C++ kernels directly from the Hugging Face Hub at runtime.</p>
<ul>
<li><strong>Portable</strong> – kernels work from arbitrary paths outside <code>PYTHONPATH</code>.</li>
<li><strong>Unique</strong> – load multiple versions of the same op side‑by‑side in one process.</li>
<li><strong>Compatible</strong> – every kernel targets all recent PyTorch wheels (CUDA, ROCm, CPU) and C‑library ABIs.</li>
</ul>
<pre><code class="language-python" data-trim data-noescape>
import torch
from kernels import get_kernel
# Download optimised kernels from the Hugging Face Hub
activation = get_kernel("kernels-community/activation")
x = torch.randn(10, 10, dtype=torch.float16, device="cuda")
y = torch.empty_like(x)
activation.gelu_fast(y, x)
print(y)
</code></pre>
<p>Same Transformer code — now with a <strong>3× faster</strong> GELU on A100s.</p>
</section>
<section>
<h2>API Design Lessons</h2>
<div style="display: flex; gap: 1.2rem; margin-top: 1.2rem;">
<div style="flex: 1; background: #2c2c2c; padding: 0.9rem; border-radius: 0.6rem; box-shadow: 0 3px 10px rgba(0,0,0,0.25); font-size: 1.35rem;">
<p style="font-weight: 700; color: var(--accent-primary); margin-bottom: 0.4rem;">🔍 Make Easy Things Obvious</p>
<p style="margin-bottom: 0.4rem;">Models load in <code>one line</code> — no boilerplate.</p>
<pre><code class="language-python" style="font-size: 0.75em;">model = AutoModel.from_pretrained("bert-base-uncased")</code></pre>
</div>
<div style="flex: 1; background: #2c2c2c; padding: 0.9rem; border-radius: 0.6rem; box-shadow: 0 3px 10px rgba(0,0,0,0.25); font-size: 1.35rem;">
<p style="font-weight: 700; color: var(--accent-primary); margin-bottom: 0.4rem;">📄 Paper-to-Repo Diff ≈ 0</p>
<p style="margin-bottom: 0.4rem;">Code reflects architecture directly.</p>
<pre><code class="language-python" style="font-size: 0.75em;">class LlamaAttention(nn.Module): ...</code></pre>
</div>
</div>
<div style="display: flex; gap: 1.2rem; margin-top: 1.2rem;">
<div style="flex: 1; background: #2c2c2c; padding: 0.9rem; border-radius: 0.6rem; box-shadow: 0 3px 10px rgba(0,0,0,0.25); font-size: 1.35rem;">
<p style="font-weight: 700; color: var(--accent-primary); margin-bottom: 0.4rem;">🚀 Prototyping → Production</p>
<p style="margin-bottom: 0.4rem;">Same model runs in vLLM for deployment:</p>
<pre><code class="language-python" style="font-size: 0.75em;">LLM(model="llama", model_impl="transformers")</code></pre>
</div>
<div style="flex: 1; background: #2c2c2c; padding: 0.9rem; border-radius: 0.6rem; box-shadow: 0 3px 10px rgba(0,0,0,0.25); font-size: 1.35rem;">
<p style="font-weight: 700; color: var(--accent-primary); margin-bottom: 0.4rem;">🎛️ Hide Sharding, Show Intent</p>
<p style="margin-bottom: 0.4rem;">Declarative TP via config:</p>
<pre><code class="language-json" style="font-size: 0.75em;">"q_proj": "colwise"</code></pre>
</div>
</div>
<p style="font-size: 1.35rem; margin-top: 1.6rem;">
We tune radios without building RF amps. ML should feel the same.
</p>
<p class="fragment" style="font-size: 1.35rem;">
…while empowering those who do build the amps.
</p>
</section>
<!-- 14 · Rise of Multimodality -->
<section>
<h2>Rise of Multimodality</h2>
<pre><code class="language-python" data-trim data-noescape>
processor = AutoProcessor.from_pretrained("Qwen/Qwen3-8B")
model = AutoModelForConditionalGeneration.from_pretrained("Qwen/Qwen3-8B")
</code></pre>
<p>Same API across text · vision · audio</p>
<p>More and more models, with specific processing - need to uniformize</p>
</section>
<section>
<h2>Rise of Multimodality: torch-powered processing</h2>
<p>Torch and torchvision ops have replaced np + PIL defaults in transformers</p>
<img data-src="assets/normalize_time_torch.webp" width="80%" height="600" alt="Fast load" />
</section>
<!-- 19 · Model Growth by Modality -->
<section>
<h2>Model Growth by Modality</h2>
<embed style="border: none;" src="assets/plot_tryout.html" dpi="300" width="70%" height="500px" />
</section>
<section>
<h2>Beyond Transformers: Ecosystem Reuse</h2>
<p><strong>Transformers</strong> makes modeling easy. <strong>vLLM</strong> makes inference fast.</p>
<div style="display: flex; gap: 2rem; margin-top: 2rem;">
<div style="flex: 1;">
<p><strong>🔧 Prototype with Transformers:</strong></p>
<pre><code class="language-python" data-trim data-noescape>
from transformers import pipeline
pipe = pipeline("text-generation", model="meta-llama/Llama-3.2-1B")
print(pipe("The future of AI is")[0]["generated_text"])
</code></pre>
</div>
<div style="flex: 1;">
<img src="assets/vLLM-Full-Logo.png" alt="vLLM Illustration" style="border-radius: 1rem; box-shadow: 0 0 12px #000; width: 100%;" />
</div>
</div>
</section>
<section>
<h2>Deploy with vLLM — No Rewrite Needed</h2>
<p><strong>vLLM</strong> supports <code>transformers</code> models out of the box. </p>
<p>Just specify <code>model_impl="transformers"</code> if needed:</p>
<pre><code class="language-python" data-trim data-noescape>
from vllm import LLM, SamplingParams
llm = LLM(model="meta-llama/Llama-3.2-1B", model_impl="transformers")
params = SamplingParams(max_tokens=20)
outputs = llm.generate("The future of AI is", sampling_params=params)
print(outputs[0].outputs[0].text)
</code></pre>
<p class="fragment">We also support SGLang now, along with thousands of other libraries! </p>
</section>
<section>
<h2 style="margin-bottom: 1rem;">
Transformers × PyTorch — Enabling the Community
</h2>
<img src="assets/transformers_as_ref.png" alt="Transformers as Reference"
style="
width: 120%;
height: 110%;
object-fit: cover;
margin-left: -2.5%;
margin-top: -2.5%;
" />
</section>
<section>
<h2>Takeaways & The Future</h2>
<div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 1rem; margin-top: 1.5rem;">
<div style="background: #2d2d2d; padding: 1rem; border-radius: 0.8rem;">
<p style="font-weight: 700; font-size: 1.4rem; color: var(--accent-primary); margin-bottom: 0.4rem;">
🤝 Symbiotic Growth
</p>
<p style="display: flex; align-items: center; gap: 0.4rem; font-size: 1.4rem;">
<img src="assets/transparent_PyTorch.png" alt="PyTorch" style="height: 1.4rem;" />
<code> PyTorch</code> & <code>transformers</code> grow together
<img src="assets/head_logo.svg" alt="Transformers" style="height: 1.4rem;" />
</p>
</div>
<div style="background: #2d2d2d; padding: 1rem; border-radius: 0.8rem;">
<p style="font-weight: 700; font-size: 1.4rem; color: var(--accent-primary); margin-bottom: 0.4rem;">
🧠 Pythonicity × Pragmatism
</p>
<p style="font-size: 1.4rem;">High-level code, low-level control — a winning combination for fast iteration.</p>
</div>
<div style="background: #2d2d2d; padding: 1rem; border-radius: 0.8rem;">
<p style="font-weight: 700; font-size: 1.4rem; color: var(--accent-primary); margin-bottom: 0.4rem;">
🚢 Models Ship Faster
</p>
<p style="font-size: 1.4rem;">Open-source models are scaling up — and landing in users' hands faster than ever.</p>
</div>
<div style="background: #2d2d2d; padding: 1rem; border-radius: 0.8rem;">
<p style="font-weight: 700; font-size: 1.4rem; color: var(--accent-primary); margin-bottom: 0.4rem;">
📚 Source of Truth for Model Definitions
</p>
<p style="font-size: 1.4rem;">We aim to be the canonical reference — while enabling the community to build, remix, and deploy at scale.</p>
</div>
</div>
<p style="margin-top: 1.5rem; font-size: 1.3rem;">
<a href="https://huggingface.co/transformers/contribute" target="_blank">
hf.co/transformers/contribute
</a>
</p>
</section>
</div>
</div>
<!-- Reveal.js core -->
<script src="https://cdn.jsdelivr.net/npm/reveal.js@5/dist/reveal.js"></script>
<script src="https://cdn.jsdelivr.net/npm/reveal.js@5/plugin/highlight/highlight.js"></script>
<script src="https://cdn.jsdelivr.net/npm/reveal.js@5/plugin/notes/notes.js"></script>
<!-- Plotly for interactive charts -->
<script src="https://cdn.plot.ly/plotly-2.31.1.min.js"></script>
<script>
Reveal.initialize({
hash: true,
slideNumber: true,
transition: 'slide',
backgroundTransition: 'convex',
plugins: [ RevealHighlight, RevealNotes ]
});
</script>
</body>
</html>
|