File size: 31,981 Bytes
78bf448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef59b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78bf448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef59b57
5e8fc79
ef59b57
 
 
 
78bf448
 
 
 
ef59b57
78bf448
 
 
 
 
 
 
 
 
 
 
 
 
 
ef59b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78bf448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef59b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78bf448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef59b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78bf448
ef59b57
78bf448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd27c9a
78bf448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef59b57
78bf448
 
 
 
 
 
 
 
 
77b586d
78bf448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd27c9a
78bf448
 
 
 
ef59b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78bf448
ef59b57
78bf448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9440539
78bf448
 
3cb0b27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78bf448
 
ef59b57
 
 
 
 
 
bd27c9a
 
ef59b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78bf448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c0fc77
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="utf-8" />
  <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  <title>PyTorch × Transformers Journey</title>

  <!-- Google Fonts -->
  <link href="https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;800&family=Fira+Code:wght@400;600&display=swap" rel="stylesheet" />

  <!-- Reveal.js core & dark theme base -->
  <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/reveal.js@5/dist/reset.css" />
  <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/reveal.js@5/dist/reveal.css" />
  <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/reveal.js@5/dist/theme/black.css" id="theme" />

  <!-- Highlight.js -->
  <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/styles/github-dark.min.css" />

  <!-- Animations -->
  <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/animate.css@4/animate.min.css" />

  <style>
    :root {
      --accent-primary: #ee4c2c; /* PyTorch orange‑red */
      --accent-secondary: #ffb347; /* lighter highlight */
      --bg-gradient-start: #1b1b1b;
      --bg-gradient-end: #242424;
    }
    html, body { font-family: 'Inter', sans-serif; }
    .reveal .slides {
      background: linear-gradient(135deg, var(--bg-gradient-start), var(--bg-gradient-end));
    }
    .reveal h1, .reveal h2, .reveal h3 { color: var(--accent-primary); font-weight: 800; letter-spacing: -0.5px; }
    .reveal pre code { font-family: 'Fira Code', monospace; font-size: 0.75em; }
    .reveal section img, .reveal section svg { border-radius: 1rem; box-shadow: 0 8px 22px rgba(0,0,0,0.4); }
    .fragment.highlight-current-blue.visible { color: var(--accent-secondary) !important; }
    /* slide-density patch */
    .reveal h1 { font-size: 2.6rem; line-height: 1.1; }
    .reveal h2 { font-size: 1.9rem; line-height: 1.15; }
    .reveal h3 { font-size: 1.4rem; line-height: 1.2; }
    .reveal p, .reveal li { font-size: 1.7rem; line-height: 1.35; }
    .reveal pre code { font-size: 0.67em; }
    /* Make <strong> more vibrant and aligned with the accent */
    .reveal strong {
      color: var(--accent-secondary);  /* orange highlight */
      font-weight: 800;
    }

    /* Make <code> more obvious: change background, font, and padding */
    .reveal code {
      background: rgba(255, 255, 255, 0.1);
      color: #ffd080;
      padding: 0.15em 0.4em;
      border-radius: 0.3em;
      font-family: 'Fira Code', monospace;
      font-size: 0.95em;
    }

    @media (max-width: 1024px) { .reveal h1{font-size:2.2rem;} .reveal h2{font-size:1.6rem;} }
    .reveal table td, .reveal table th { font-size: 0.85rem; padding: 4px 8px; }
        body::after {
      content: "";
      position: fixed;
      bottom: 3.5em;
      left: 3.5em;
      width: 270px;         /* desired size */
      height: 117px;
      background-image: url(assets/py2.png);
      background-size: contain;
      background-repeat: no-repeat;
      z-index: 9999;
      box-shadow: 5px 5px 10px #000;
      pointer-events: none;
    }



  
  
  </style>
</head>
<body>
  <div class="reveal">
    <div class="slides">
      <section>
        <img src="assets/screenpage2.png" alt="Full slide image"
        style="
        width:120%;
        height:110%;
        object-fit:cover;
        margin-left:-2.5%;
        margin-top:-2.5%;
        " />      <!-- 1 · Opening -->
        </section>
      <section data-auto-animate>
        <div style="display: flex; align-items: center; justify-content: center; gap: 1.2rem; margin-bottom: 1rem;" class="animate__animated animate__fadeInDown">
          <img src="assets/transparent_PyTorch.png" alt="PyTorch Logo" style="height: 48px;" />
          <span style="color: white; font-size: 2.4rem; font-weight: 700;">×</span>
          <img src="assets/head_logo.svg" alt="Transformers Logo" style="height: 48px;" />
        </div>
      
        <h1 class="animate__animated animate__fadeInDown">PyTorch × Transformers Journey</h1>
        <h3 class="animate__animated animate__fadeInDown animate__delay-1s">Pythonicity, Autodiff & Modularity in Modern AI</h3>
        <p class="animate__animated animate__fadeInUp animate__delay-2s">Pablo Montalvo‑Leroux &nbsp;·&nbsp; ML Engineer @ Hugging Face</p>
      </section>
      
      <section>
        <h2>2016‑2018: Backprop &amp; Birth Pangs</h2>
        <p>The journey began with uncertainty: back in 2016, machine learning was far from standardized. Tools like Theano and CNTK were fading, and many of us—myself included—were jumping framework to framework. It was a time of raw experimentation.</p>
        <ul>
          <li>Frameworks were in flux; few stuck around.</li>
          <li>MLPs evolved to RNNs and LSTMs.</li>
          <li><strong>2017, Attention, then 2018: BERT</strong> arrives, blowing the roof off what's possible.</li>
        </ul>
        <p class="fragment">But reproducing results remained frustratingly difficult.</p>
      </section>
      
      <section>
        <h2>Transformers × PyTorch: Reproducibility</h2>
        <p>That all changed with <code>pytorch-pretrained-bert</code>, the predecessor to Transformers. Suddenly, the magic of BERT was available in an interface that made sense.</p>
      
        <div style="display: flex; gap: 2rem; justify-content: space-between; margin-top: 2rem;">
          <div style="flex: 1; background: #2d2d2d; padding: 1.2rem; border-radius: 1rem; box-shadow: 0 4px 12px rgba(0,0,0,0.3);">
            <p style="font-weight: 800; color: var(--accent-primary); margin-bottom: 0.6rem;">
              🧩 Simpler Interface
            </p>
            <p>No static graphs, just Python functions and PyTorch modules.</p>
          </div>
          <div style="flex: 1; background: #2d2d2d; padding: 1.2rem; border-radius: 1rem; box-shadow: 0 4px 12px rgba(0,0,0,0.3);">
            <p style="font-weight: 800; color: var(--accent-primary); margin-bottom: 0.6rem;">
              ✨ Hackability
            </p>
            <p>Readable, hackable code meant results could be shared, reproduced, improved.</p>
          </div>
          <div style="flex: 1; background: #2d2d2d; padding: 1.2rem; border-radius: 1rem; box-shadow: 0 4px 12px rgba(0,0,0,0.3);">
            <p style="font-weight: 800; color: var(--accent-primary); margin-bottom: 0.6rem;">
              🚀 Community Shift
            </p>
            <p>This shifted the research community towards PyTorch.</p>
          </div>
        </div>
      </section>
      

      <!-- 3 · Static vs Dynamic Graphs -->
      <section>
        <h2>Static vs Dynamic Graphs</h2>
        <p>Static graphs require you to compile, wait, and cross fingers the bug reproduces.</p>
        <p>Dynamic graphs mean you can drop <code>pdb.set_trace()</code> anywhere and continue iterating.</p>
        <p>Nowadays <code>torch.compile</code> gives the best of both worlds: write dynamically, ship something ahead‑of‑time optimised.</p>
      </section>
      

      <!-- 4 · Dynamic Graphs Enabled Contribution -->
      <section>
        <h2>Dynamic Graphs Enabled Contribution</h2>
        <ul>
          <li>Developers debug at line‑rate — no cold‑start recompiles.</li>
          <li>Pull‑requests remained reproducible overnight, which accelerated trust.</li>
          <li>Static‑graph alternatives stalled and the community consolidated around PyTorch.</li>
        </ul>
      </section>
      
      <section>
        <h2>Clone the Paper Tonight → Tweak Tomorrow</h2>
        <p>PyTorch lowered the barrier to implementation — Transformers built on top of that simplicity.</p>
      
        <div style="display: flex; gap: 1.5rem; margin-top: 2rem;">
          <div style="flex: 1; background: #2d2d2d; padding: 1.2rem; border-radius: 1rem; box-shadow: 0 4px 12px rgba(0,0,0,0.3);">
            <p style="font-weight: 800; color: var(--accent-primary); margin-bottom: 0.5rem;">🔍 Live Debugging</p>
            <p>2018: BERT fine-tunes meant <code>print(tensor)</code>, not <em>recompile & hope</em>.</p>
          </div>
      
          <div style="flex: 1; background: #2d2d2d; padding: 1.2rem; border-radius: 1rem; box-shadow: 0 4px 12px rgba(0,0,0,0.3);">
            <p style="font-weight: 800; color: var(--accent-primary); margin-bottom: 0.5rem;">🤝 Fast Review</p>
            <p>Patches were understandable and reproducible — merged quickly, verified quickly.</p>
          </div>
      
          <div style="flex: 1; background: #2d2d2d; padding: 1.2rem; border-radius: 1rem; box-shadow: 0 4px 12px rgba(0,0,0,0.3);">
            <p style="font-weight: 800; color: var(--accent-primary); margin-bottom: 0.5rem;">⚡ Fast Iteration</p>
            <p>Experiments shifted from <em>weeks</em> to <strong>hours</strong> — feedback cycles accelerated.</p>
          </div>
        </div>
      </section>
      
      <!-- 6 · One Model · One File -->
      <section>
        <h2>“One Model · One File” — Why it Matters</h2>
        <pre><code class="language-python" data-trim data-noescape>
# modeling_bert.py  — single source of truth
class BertConfig(PretrainedConfig):
    ...

class BertSelfAttention(nn.Module):
    ...

class BertLayer(nn.Module):
    ...

class BertModel(PreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.embeddings = BertEmbeddings(config)
        self.encoder = nn.ModuleList(
            [BertLayer(config) for _ in range(config.num_hidden_layers)]
        )
        self.init_weights()
        </code></pre>
        <ul>
          <li>All layers, forward pass, and <code>from_pretrained()</code> logic live together.</li>
          <li>No cross‑file inheritance maze — copy to Colab, hack, and run.</li>
          <li>Reviewers diff one file; merge time dropped from days to hours.</li>
        </ul>
      </section>

            <!-- 8 · Paradigms come at a cost -->
      <section>
        <h2>Paradigms Come at a Cost</h2>
        <div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 1.5rem; margin-top: 2rem;">
          <div style="background: #2d2d2d; padding: 1.2rem; border-radius: 1rem; box-shadow: 0 4px 12px rgba(0,0,0,0.3);">
            <p style="font-weight: 800; color: var(--accent-primary); margin-bottom: 0.5rem;">📈 Community Growth</p>
            <p>The scientific and engineering ML community thrived with Transformers.</p>
          </div>
      
          <div style="background: #2d2d2d; padding: 1.2rem; border-radius: 1rem; box-shadow: 0 4px 12px rgba(0,0,0,0.3);">
            <p style="font-weight: 800; color: var(--accent-primary); margin-bottom: 0.5rem;">🔥 PyTorch Synergy</p>
            <p>Transformers and PyTorch grew together — adoption fed back into both ecosystems.</p>
          </div>
      
          <div style="background: #2d2d2d; padding: 1.2rem; border-radius: 1rem; box-shadow: 0 4px 12px rgba(0,0,0,0.3);">
            <p style="font-weight: 800; color: var(--accent-primary); margin-bottom: 0.5rem;">🛠️ Maintenance Pressure</p>
            <p>We duplicate code on purpose — to preserve clarity, portability, and hackability.</p>
          </div>
      
          <div class="fragment" style="background: #2d2d2d; padding: 1.2rem; border-radius: 1rem; box-shadow: 0 4px 12px rgba(0,0,0,0.3);">
            <p style="font-weight: 800; color: var(--accent-primary); margin-bottom: 0.5rem;">🧬 Pythonic Modularity</p>
            <p>The <strong>Modularity</strong> of python is never far :)</p>
          </div>
        </div>
      </section>
      
      <!-- 8 · Back to Python: Mary Shelley Mode -->
      <section>
        <h2>Back to Python: Modular “Mary Shelley” Mode</h2>
        <p>Compose new blocks via subclass &amp; override.</p>
      <pre><code class="language-python" data-trim>
class GlmMLP(Phi3MLP):
  pass

class GlmAttention(LlamaAttention):
  def __init__(self, config, layer_idx=None):
      super().__init__(config, layer_idx)
      self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim,
                              config.hidden_size, bias=False)

class GlmForCausalLM(LlamaForCausalLM):
  pass
      </code></pre>
      <p>AST expands → full modeling file, still hackable.</p>
    </section>

    <section>
      <h2>Back to Python: It's alive!</h2>
      <p>All the code becomes runnable and a self-contained model definition</p>
    <pre><code class="language-python" data-trim>

  class GlmMLP(nn.Module):
      def __init__(self, config):
          super().__init__()
  
          self.config = config
          self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
          self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
          self.activation_fn = ACT2FN[config.hidden_act]
  
      def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
          up_states = self.gate_up_proj(hidden_states)
  
          gate, up_states = up_states.chunk(2, dim=-1)
          up_states = up_states * self.activation_fn(gate)
  
          return self.down_proj(up_states)
  
  
  class GlmAttention(nn.Module):
      """Multi-headed attention from 'Attention Is All You Need' paper"""
  
      def __init__(self, config: GlmConfig, layer_idx: Optional[int] = None):
          super().__init__()
          self.config = config
          self.layer_idx = layer_idx
          self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
          self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
          self.scaling = self.head_dim**-0.5
          self.attention_dropout = config.attention_dropout
          self.is_causal = True
  
          self.q_proj = nn.Linear(
              config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
          )
          self.k_proj = nn.Linear(
              config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
          )
          self.v_proj = nn.Linear(
              config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
          )
          self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
  
      def forward(
          self,
          hidden_states: torch.Tensor,
          position_embeddings: Tuple[torch.Tensor, torch.Tensor],
          attention_mask: Optional[torch.Tensor],
          past_key_value: Optional[Cache] = None,
          cache_position: Optional[torch.LongTensor] = None,
          **kwargs: Unpack[FlashAttentionKwargs],
      ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
          input_shape = hidden_states.shape[:-1]
          hidden_shape = (*input_shape, -1, self.head_dim)
  
          query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
          key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
          value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
  
          cos, sin = position_embeddings
          query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
  
          if past_key_value is not None:
              # sin and cos are specific to RoPE models; cache_position needed for the static cache
              cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
              key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
  
          attention_interface: Callable = eager_attention_forward
  
          if self.config._attn_implementation != "eager":
              if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
                  logger.warning_once(
                      "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
                      'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
                  )
              else:
                  attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
  
          attn_output, attn_weights = attention_interface(
              self,
              query_states,
              key_states,
              value_states,
              attention_mask,
              dropout=0.0 if not self.training else self.attention_dropout,
              scaling=self.scaling,
              **kwargs,
          )
  
          attn_output = attn_output.reshape(*input_shape, -1).contiguous()
          attn_output = self.o_proj(attn_output)
          return attn_output, attn_weights
  
  
  @use_kernel_forward_from_hub("RMSNorm")
  class GlmRMSNorm(nn.Module):
      def __init__(self, hidden_size, eps=1e-6):
          """
          GlmRMSNorm is equivalent to T5LayerNorm
          """
          super().__init__()
          self.weight = nn.Parameter(torch.ones(hidden_size))
          self.variance_epsilon = eps
  
      def forward(self, hidden_states):
          input_dtype = hidden_states.dtype
          hidden_states = hidden_states.to(torch.float32)
          variance = hidden_states.pow(2).mean(-1, keepdim=True)
          hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
          return self.weight * hidden_states.to(input_dtype)
  
      def extra_repr(self):
          return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
  
  
  class GlmRotaryEmbedding(nn.Module):
      def __init__(self, config: GlmConfig, device=None):
          super().__init__()
          # BC: "rope_type" was originally "type"
          if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
              self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
          else:
              self.rope_type = "default"
          self.max_seq_len_cached = config.max_position_embeddings
          self.original_max_seq_len = config.max_position_embeddings
  
          self.config = config
          self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
  
          inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
          self.register_buffer("inv_freq", inv_freq, persistent=False)
          self.original_inv_freq = self.inv_freq
    </code></pre>
    <p> We keep hackability while reconnecting with Python working paradigms.</p>
  </section>


      <!-- 9 · Logit Debugger -->
      <section>
        <h2>Logit Debugger: Trust but Verify</h2>
        <ul>
          <li>Hook every <code>nn.Module</code>; dump logits layer‑by‑layer</li>
          <li>Spot ε‑level drifts (LayerNorm, FP16 underflow…)</li>
          <li>JSON traces diffable in CI</li>
          <img data-src="assets/visual_debugger.png" alt="Visual debugger" />

        </ul>
      </section>

      <!-- 10 · DTensor & TP API -->
      <section>
        <h2>DTensor & Tensor‑Parallel API</h2>
        <p>Before, changing to Tensor Parallel meant changing the code.</p>

        <pre><code class="language-python" data-trim data-noescape>
          from transformers.modeling_utils import PreTrainedModel
          from megatron.model import ColumnParallelLinear, RowParallelLinear
          
          class MyTPModel(PreTrainedModel):
              def __init__(self, config):
                  super().__init__(config)
                  self.q_proj = ColumnParallelLinear(config.hidden_size, config.hidden_size)
                  self.k_proj = ColumnParallelLinear(config.hidden_size, config.hidden_size)
                  self.v_proj = ColumnParallelLinear(config.hidden_size, config.hidden_size)
                  self.o_proj = RowParallelLinear(config.hidden_size, config.hidden_size)
          
                  </code></pre>
      </section>

      <!-- 11 · Zero‑Config Parallelism -->
      <section>
        <h2>Zero‑Config Tensor Parallelism</h2>
        <p>The <code>tp_plan</code> JSON keeps model code pristine and declarative.</p>
        <pre><code class="language-json" data-trim data-noescape>{
  "layer.*.self_attn.q_proj": "colwise",
  "layer.*.self_attn.k_proj": "colwise",
  "layer.*.self_attn.v_proj": "colwise",
  "layer.*.self_attn.o_proj": "rowwise"
}</code></pre>
<p>Translated to</p>

        <pre><code class="language-python" data-trim data-noescape>
def translate_to_torch_parallel_style(style: str):
    if style == "colwise":
        return ColwiseParallel()
    elif style == "rowwise":
        return RowwiseParallel()
    # …
        </code></pre>
        <p>One JSON → 100 B param model on 8 GPUs. Change the plan, not the code.</p>
      </section>

      <!-- 12 · Cache Allocator -->
      <section>
        <h2>Improvements, Load faster & stronger: Cache Allocator</h2>
        <p>0‑copy weight sharding, single cuda Malloc</p>
        <p>Faster model loads, even for a 50-shards 100B model (when we were sprinting Llama4!)</p>
        <img data-src="assets/fastload.png" alt="SurprisedLewis" />
      </section>

      <!-- 15 · Why Python wins -->
      <section>
        <h2>Why Python Wins</h2>
        <ul>
          <li>Low entry barrier (although hard to master)</li>
          <li>High‑level semantics express low‑level intent</li>
          <li>Seamless C++/Rust extension points</li>
        </ul>
      </section>

      <!-- 16 · Where Python can bite -->
      <section>
        <h2>Where Python can bite 🐍</h2>
        <ul>
          <li>Interpreter overhead on microkernels (token‑by‑token decode)</li>
          <li>GIL can throttle async host‑side work</li>
          <li>Easy to under‑optimise code fresh out of the lab</li>
        </ul>
        <p class="fragment">All of these can be mitigated: Triton, compiled custom ops, compile‑time fallback, <strong>custom kernels</strong></p>
      </section>


      <!-- 17 · Kernel Hub -->
      <section>
        <h2>Kernel Hub: Optimised Ops from the Community</h2>
        <p>Kernel Hub lets any Python program <em>download and hot‑load</em> compiled CUDA/C++ kernels directly from the Hugging Face Hub at runtime.</p>
        <ul>
          <li><strong>Portable</strong> – kernels work from arbitrary paths outside <code>PYTHONPATH</code>.</li>
          <li><strong>Unique</strong> – load multiple versions of the same op side‑by‑side in one process.</li>
          <li><strong>Compatible</strong> – every kernel targets all recent PyTorch wheels (CUDA, ROCm, CPU) and C‑library ABIs.</li>
        </ul>
        <pre><code class="language-python" data-trim data-noescape>
import torch
from kernels import get_kernel

# Download optimised kernels from the Hugging Face Hub
activation = get_kernel("kernels-community/activation")

x = torch.randn(10, 10, dtype=torch.float16, device="cuda")
y = torch.empty_like(x)
activation.gelu_fast(y, x)
print(y)
        </code></pre>
        <p>Same Transformer code — now with a <strong>3× faster</strong> GELU on A100s.</p>
      </section>

      <section>
        <h2>API Design Lessons</h2>
      
        <div style="display: flex; gap: 1.2rem; margin-top: 1.2rem;">
          <div style="flex: 1; background: #2c2c2c; padding: 0.9rem; border-radius: 0.6rem; box-shadow: 0 3px 10px rgba(0,0,0,0.25); font-size: 1.35rem;">
            <p style="font-weight: 700; color: var(--accent-primary); margin-bottom: 0.4rem;">🔍 Make Easy Things Obvious</p>
            <p style="margin-bottom: 0.4rem;">Models load in <code>one line</code> — no boilerplate.</p>
            <pre><code class="language-python" style="font-size: 0.75em;">model = AutoModel.from_pretrained("bert-base-uncased")</code></pre>
          </div>
      
          <div style="flex: 1; background: #2c2c2c; padding: 0.9rem; border-radius: 0.6rem; box-shadow: 0 3px 10px rgba(0,0,0,0.25); font-size: 1.35rem;">
            <p style="font-weight: 700; color: var(--accent-primary); margin-bottom: 0.4rem;">📄 Paper-to-Repo Diff ≈ 0</p>
            <p style="margin-bottom: 0.4rem;">Code reflects architecture directly.</p>
            <pre><code class="language-python" style="font-size: 0.75em;">class LlamaAttention(nn.Module): ...</code></pre>
          </div>
        </div>
      
        <div style="display: flex; gap: 1.2rem; margin-top: 1.2rem;">
          <div style="flex: 1; background: #2c2c2c; padding: 0.9rem; border-radius: 0.6rem; box-shadow: 0 3px 10px rgba(0,0,0,0.25); font-size: 1.35rem;">
            <p style="font-weight: 700; color: var(--accent-primary); margin-bottom: 0.4rem;">🚀 Prototyping → Production</p>
            <p style="margin-bottom: 0.4rem;">Same model runs in vLLM for deployment:</p>
            <pre><code class="language-python" style="font-size: 0.75em;">LLM(model="llama", model_impl="transformers")</code></pre>
          </div>
      
          <div style="flex: 1; background: #2c2c2c; padding: 0.9rem; border-radius: 0.6rem; box-shadow: 0 3px 10px rgba(0,0,0,0.25); font-size: 1.35rem;">
            <p style="font-weight: 700; color: var(--accent-primary); margin-bottom: 0.4rem;">🎛️ Hide Sharding, Show Intent</p>
            <p style="margin-bottom: 0.4rem;">Declarative TP via config:</p>
            <pre><code class="language-json" style="font-size: 0.75em;">"q_proj": "colwise"</code></pre>
          </div>
        </div>
      
        <p style="font-size: 1.35rem; margin-top: 1.6rem;">
          We tune radios without building RF amps. ML should feel the same.
        </p>
        <p class="fragment" style="font-size: 1.35rem;">
          …while empowering those who do build the amps.
        </p>
      </section>
      
      <!-- 14 · Rise of Multimodality -->
      <section>
        <h2>Rise of Multimodality</h2>
        <pre><code class="language-python" data-trim data-noescape>
processor = AutoProcessor.from_pretrained("Qwen/Qwen3-8B")
model = AutoModelForConditionalGeneration.from_pretrained("Qwen/Qwen3-8B")
        </code></pre>
        <p>Same API across text · vision · audio</p>
        <p>More and more models, with specific processing - need to uniformize</p>

      </section>

      <section>
        <h2>Rise of Multimodality: torch-powered processing</h2>
        <p>Torch and torchvision ops have replaced np + PIL defaults in transformers</p>

        <img data-src="assets/normalize_time_torch.webp" width="80%" height="600" alt="Fast load" />

      </section>
      <!-- 19 · Model Growth by Modality -->
      <section>
        <h2>Model Growth by Modality</h2>
        <embed style="border: none;" src="assets/plot_tryout.html" dpi="300" width="70%" height="500px" />
      </section>


      
      <section>
        <h2>Beyond Transformers: Ecosystem Reuse</h2>
        <p><strong>Transformers</strong> makes modeling easy. <strong>vLLM</strong> makes inference fast.</p>
      
        <div style="display: flex; gap: 2rem; margin-top: 2rem;">
          <div style="flex: 1;">
            <p><strong>🔧 Prototype with Transformers:</strong></p>
            <pre><code class="language-python" data-trim data-noescape>
      from transformers import pipeline
      
      pipe = pipeline("text-generation", model="meta-llama/Llama-3.2-1B")
      print(pipe("The future of AI is")[0]["generated_text"])
            </code></pre>
          </div>
          <div style="flex: 1;">
            <img src="assets/vLLM-Full-Logo.png" alt="vLLM Illustration" style="border-radius: 1rem; box-shadow: 0 0 12px #000; width: 100%;" />
          </div>
        </div>
      </section>
      <section>
        <h2>Deploy with vLLM — No Rewrite Needed</h2>
        <p><strong>vLLM</strong> supports <code>transformers</code> models out of the box. </p>
          
        <p>Just specify <code>model_impl="transformers"</code> if needed:</p>
      
        <pre><code class="language-python" data-trim data-noescape>
      from vllm import LLM, SamplingParams
      
      llm = LLM(model="meta-llama/Llama-3.2-1B", model_impl="transformers")
      params = SamplingParams(max_tokens=20)
      outputs = llm.generate("The future of AI is", sampling_params=params)
      print(outputs[0].outputs[0].text)
        </code></pre>
        <p class="fragment">We also support SGLang now, along with thousands of other libraries! </p>

      </section>
      <section>
        <h2 style="margin-bottom: 1rem;">
          Transformers × PyTorch — Enabling the Community
        </h2>
        <img src="assets/transformers_as_ref.png" alt="Transformers as Reference"
          style="
            width: 120%;
            height: 110%;
            object-fit: cover;
            margin-left: -2.5%;
            margin-top: -2.5%;
          " />
      </section>
      
      <section>
        <h2>Takeaways &amp; The Future</h2>
        <div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 1rem; margin-top: 1.5rem;">
          <div style="background: #2d2d2d; padding: 1rem; border-radius: 0.8rem;">
            <p style="font-weight: 700; font-size: 1.4rem; color: var(--accent-primary); margin-bottom: 0.4rem;">
              🤝 Symbiotic Growth
            </p>
            <p style="display: flex; align-items: center; gap: 0.4rem; font-size: 1.4rem;">
              <img src="assets/transparent_PyTorch.png" alt="PyTorch" style="height: 1.4rem;" />
              <code> PyTorch</code> &amp; <code>transformers</code> grow together
              <img src="assets/head_logo.svg" alt="Transformers" style="height: 1.4rem;" />
            </p>
          </div>
      
          <div style="background: #2d2d2d; padding: 1rem; border-radius: 0.8rem;">
            <p style="font-weight: 700; font-size: 1.4rem; color: var(--accent-primary); margin-bottom: 0.4rem;">
              🧠 Pythonicity × Pragmatism
            </p>
            <p style="font-size: 1.4rem;">High-level code, low-level control — a winning combination for fast iteration.</p>
          </div>
      
          <div style="background: #2d2d2d; padding: 1rem; border-radius: 0.8rem;">
            <p style="font-weight: 700; font-size: 1.4rem; color: var(--accent-primary); margin-bottom: 0.4rem;">
              🚢 Models Ship Faster
            </p>
            <p style="font-size: 1.4rem;">Open-source models are scaling up — and landing in users' hands faster than ever.</p>
          </div>
      
          <div style="background: #2d2d2d; padding: 1rem; border-radius: 0.8rem;">
            <p style="font-weight: 700; font-size: 1.4rem; color: var(--accent-primary); margin-bottom: 0.4rem;">
              📚 Source of Truth for Model Definitions
            </p>
            <p style="font-size: 1.4rem;">We aim to be the canonical reference — while enabling the community to build, remix, and deploy at scale.</p>
          </div>
        </div>
      
        <p style="margin-top: 1.5rem; font-size: 1.3rem;">
          <a href="https://huggingface.co/transformers/contribute" target="_blank">
            hf.co/transformers/contribute
          </a>
        </p>
      </section>
      

    </div>
  </div>

  <!-- Reveal.js core -->
  <script src="https://cdn.jsdelivr.net/npm/reveal.js@5/dist/reveal.js"></script>
  <script src="https://cdn.jsdelivr.net/npm/reveal.js@5/plugin/highlight/highlight.js"></script>
  <script src="https://cdn.jsdelivr.net/npm/reveal.js@5/plugin/notes/notes.js"></script>
  <!-- Plotly for interactive charts -->
  <script src="https://cdn.plot.ly/plotly-2.31.1.min.js"></script>
  <script>
    Reveal.initialize({
      hash: true,
      slideNumber: true,
      transition: 'slide',
      backgroundTransition: 'convex',
      plugins: [ RevealHighlight, RevealNotes ]
    });
  </script>
</body>
</html>