Molbap HF Staff commited on
Commit
3cb0b27
·
verified ·
1 Parent(s): 77b586d

Change order a bit

Browse files
Files changed (1) hide show
  1. index.html +52 -52
index.html CHANGED
@@ -213,58 +213,6 @@ class BertModel(PreTrainedModel):
213
  </ul>
214
  </section>
215
 
216
- <section>
217
- <h2>Beyond Transformers: Ecosystem Reuse</h2>
218
- <p><strong>Transformers</strong> makes modeling easy. <strong>vLLM</strong> makes inference fast.</p>
219
-
220
- <div style="display: flex; gap: 2rem; margin-top: 2rem;">
221
- <div style="flex: 1;">
222
- <p><strong>🔧 Prototype with Transformers:</strong></p>
223
- <pre><code class="language-python" data-trim data-noescape>
224
- from transformers import pipeline
225
-
226
- pipe = pipeline("text-generation", model="meta-llama/Llama-3.2-1B")
227
- print(pipe("The future of AI is")[0]["generated_text"])
228
- </code></pre>
229
- </div>
230
- <div style="flex: 1;">
231
- <img src="assets/vLLM-Full-Logo.png" alt="vLLM Illustration" style="border-radius: 1rem; box-shadow: 0 0 12px #000; width: 100%;" />
232
- </div>
233
- </div>
234
- </section>
235
- <section>
236
- <h2>Deploy with vLLM — No Rewrite Needed</h2>
237
- <p><strong>vLLM</strong> supports <code>transformers</code> models out of the box. </p>
238
-
239
- <p>Just specify <code>model_impl="transformers"</code> if needed:</p>
240
-
241
- <pre><code class="language-python" data-trim data-noescape>
242
- from vllm import LLM, SamplingParams
243
-
244
- llm = LLM(model="meta-llama/Llama-3.2-1B", model_impl="transformers")
245
- params = SamplingParams(max_tokens=20)
246
- outputs = llm.generate("The future of AI is", sampling_params=params)
247
- print(outputs[0].outputs[0].text)
248
- </code></pre>
249
- <p class="fragment">We also support SGLang now, along with thousands of other libraries! </p>
250
-
251
- </section>
252
- <section>
253
- <h2 style="margin-bottom: 1rem;">
254
- Transformers × PyTorch — Enabling the Community
255
- </h2>
256
- <img src="assets/transformers_as_ref.png" alt="Transformers as Reference"
257
- style="
258
- width: 120%;
259
- height: 110%;
260
- object-fit: cover;
261
- margin-left: -2.5%;
262
- margin-top: -2.5%;
263
- " />
264
- </section>
265
-
266
-
267
-
268
  <!-- 8 · Paradigms come at a cost -->
269
  <section>
270
  <h2>Paradigms Come at a Cost</h2>
@@ -625,6 +573,58 @@ model = AutoModelForConditionalGeneration.from_pretrained("Qwen/Qwen3-8B")
625
  <iframe src="assets/model_growth.html" width="80%" height="600" style="border:none;"></iframe>
626
  </section>
627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
628
  <section>
629
  <h2>Takeaways &amp; The Future</h2>
630
  <div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 1rem; margin-top: 1.5rem;">
 
213
  </ul>
214
  </section>
215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216
  <!-- 8 · Paradigms come at a cost -->
217
  <section>
218
  <h2>Paradigms Come at a Cost</h2>
 
573
  <iframe src="assets/model_growth.html" width="80%" height="600" style="border:none;"></iframe>
574
  </section>
575
 
576
+
577
+
578
+ <section>
579
+ <h2>Beyond Transformers: Ecosystem Reuse</h2>
580
+ <p><strong>Transformers</strong> makes modeling easy. <strong>vLLM</strong> makes inference fast.</p>
581
+
582
+ <div style="display: flex; gap: 2rem; margin-top: 2rem;">
583
+ <div style="flex: 1;">
584
+ <p><strong>🔧 Prototype with Transformers:</strong></p>
585
+ <pre><code class="language-python" data-trim data-noescape>
586
+ from transformers import pipeline
587
+
588
+ pipe = pipeline("text-generation", model="meta-llama/Llama-3.2-1B")
589
+ print(pipe("The future of AI is")[0]["generated_text"])
590
+ </code></pre>
591
+ </div>
592
+ <div style="flex: 1;">
593
+ <img src="assets/vLLM-Full-Logo.png" alt="vLLM Illustration" style="border-radius: 1rem; box-shadow: 0 0 12px #000; width: 100%;" />
594
+ </div>
595
+ </div>
596
+ </section>
597
+ <section>
598
+ <h2>Deploy with vLLM — No Rewrite Needed</h2>
599
+ <p><strong>vLLM</strong> supports <code>transformers</code> models out of the box. </p>
600
+
601
+ <p>Just specify <code>model_impl="transformers"</code> if needed:</p>
602
+
603
+ <pre><code class="language-python" data-trim data-noescape>
604
+ from vllm import LLM, SamplingParams
605
+
606
+ llm = LLM(model="meta-llama/Llama-3.2-1B", model_impl="transformers")
607
+ params = SamplingParams(max_tokens=20)
608
+ outputs = llm.generate("The future of AI is", sampling_params=params)
609
+ print(outputs[0].outputs[0].text)
610
+ </code></pre>
611
+ <p class="fragment">We also support SGLang now, along with thousands of other libraries! </p>
612
+
613
+ </section>
614
+ <section>
615
+ <h2 style="margin-bottom: 1rem;">
616
+ Transformers × PyTorch — Enabling the Community
617
+ </h2>
618
+ <img src="assets/transformers_as_ref.png" alt="Transformers as Reference"
619
+ style="
620
+ width: 120%;
621
+ height: 110%;
622
+ object-fit: cover;
623
+ margin-left: -2.5%;
624
+ margin-top: -2.5%;
625
+ " />
626
+ </section>
627
+
628
  <section>
629
  <h2>Takeaways &amp; The Future</h2>
630
  <div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 1rem; margin-top: 1.5rem;">