Spaces:
Running
Running
Update index.html
Browse files- index.html +4 -95
index.html
CHANGED
@@ -303,10 +303,6 @@ class GlmAttention(LlamaAttention):
|
|
303 |
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim,
|
304 |
config.hidden_size, bias=False)
|
305 |
|
306 |
-
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
307 |
-
# Slightly different RoPE
|
308 |
-
…
|
309 |
-
|
310 |
class GlmForCausalLM(LlamaForCausalLM):
|
311 |
pass
|
312 |
</code></pre>
|
@@ -318,7 +314,7 @@ class GlmForCausalLM(LlamaForCausalLM):
|
|
318 |
<p>All the code becomes runnable and a self-contained model definition</p>
|
319 |
<pre><code class="language-python" data-trim>
|
320 |
|
321 |
-
|
322 |
def __init__(self, config):
|
323 |
super().__init__()
|
324 |
|
@@ -336,93 +332,6 @@ class GlmForCausalLM(LlamaForCausalLM):
|
|
336 |
return self.down_proj(up_states)
|
337 |
|
338 |
|
339 |
-
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
340 |
-
"""
|
341 |
-
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
342 |
-
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
343 |
-
"""
|
344 |
-
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
345 |
-
if n_rep == 1:
|
346 |
-
return hidden_states
|
347 |
-
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
348 |
-
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
349 |
-
|
350 |
-
|
351 |
-
def eager_attention_forward(
|
352 |
-
module: nn.Module,
|
353 |
-
query: torch.Tensor,
|
354 |
-
key: torch.Tensor,
|
355 |
-
value: torch.Tensor,
|
356 |
-
attention_mask: Optional[torch.Tensor],
|
357 |
-
scaling: float,
|
358 |
-
dropout: float = 0.0,
|
359 |
-
**kwargs,
|
360 |
-
):
|
361 |
-
key_states = repeat_kv(key, module.num_key_value_groups)
|
362 |
-
value_states = repeat_kv(value, module.num_key_value_groups)
|
363 |
-
|
364 |
-
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
365 |
-
if attention_mask is not None:
|
366 |
-
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
367 |
-
attn_weights = attn_weights + causal_mask
|
368 |
-
|
369 |
-
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
370 |
-
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
371 |
-
attn_output = torch.matmul(attn_weights, value_states)
|
372 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
373 |
-
|
374 |
-
return attn_output, attn_weights
|
375 |
-
|
376 |
-
|
377 |
-
def rotate_half(x):
|
378 |
-
"""Rotates half the hidden dims of the input."""
|
379 |
-
x1 = x[..., 0::2]
|
380 |
-
x2 = x[..., 1::2]
|
381 |
-
return torch.stack((-x2, x1), dim=-1).flatten(-2)
|
382 |
-
|
383 |
-
|
384 |
-
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
385 |
-
"""Applies Rotary Position Embedding to the query and key tensors.
|
386 |
-
|
387 |
-
Args:
|
388 |
-
q (`torch.Tensor`): The query tensor.
|
389 |
-
k (`torch.Tensor`): The key tensor.
|
390 |
-
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
391 |
-
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
392 |
-
position_ids (`torch.Tensor`, *optional*):
|
393 |
-
Deprecated and unused.
|
394 |
-
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
395 |
-
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
396 |
-
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
397 |
-
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
398 |
-
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
399 |
-
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
400 |
-
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
401 |
-
Returns:
|
402 |
-
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
403 |
-
"""
|
404 |
-
cos = cos.unsqueeze(unsqueeze_dim)
|
405 |
-
sin = sin.unsqueeze(unsqueeze_dim)
|
406 |
-
|
407 |
-
# Interleave them instead of usual shape
|
408 |
-
cos = cos[..., : cos.shape[-1] // 2].repeat_interleave(2, dim=-1)
|
409 |
-
sin = sin[..., : sin.shape[-1] // 2].repeat_interleave(2, dim=-1)
|
410 |
-
|
411 |
-
# Keep half or full tensor for later concatenation
|
412 |
-
rotary_dim = cos.shape[-1]
|
413 |
-
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
|
414 |
-
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
|
415 |
-
|
416 |
-
# Apply rotary embeddings on the first half or full tensor
|
417 |
-
q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
|
418 |
-
k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
|
419 |
-
|
420 |
-
# Concatenate back to full shape
|
421 |
-
q_embed = torch.cat([q_embed, q_pass], dim=-1)
|
422 |
-
k_embed = torch.cat([k_embed, k_pass], dim=-1)
|
423 |
-
return q_embed, k_embed
|
424 |
-
|
425 |
-
|
426 |
class GlmAttention(nn.Module):
|
427 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
428 |
|
@@ -647,7 +556,7 @@ y = torch.empty_like(x)
|
|
647 |
activation.gelu_fast(y, x)
|
648 |
print(y)
|
649 |
</code></pre>
|
650 |
-
<p
|
651 |
</section>
|
652 |
|
653 |
<section>
|
@@ -722,8 +631,8 @@ model = AutoModelForConditionalGeneration.from_pretrained("Qwen/Qwen3-8B")
|
|
722 |
🤝 Symbiotic Growth
|
723 |
</p>
|
724 |
<p style="display: flex; align-items: center; gap: 0.4rem; font-size: 1.4rem;">
|
725 |
-
<img src="assets/
|
726 |
-
PyTorch & <code>transformers</code> grow together
|
727 |
<img src="assets/head_logo.svg" alt="Transformers" style="height: 1.4rem;" />
|
728 |
</p>
|
729 |
</div>
|
|
|
303 |
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim,
|
304 |
config.hidden_size, bias=False)
|
305 |
|
|
|
|
|
|
|
|
|
306 |
class GlmForCausalLM(LlamaForCausalLM):
|
307 |
pass
|
308 |
</code></pre>
|
|
|
314 |
<p>All the code becomes runnable and a self-contained model definition</p>
|
315 |
<pre><code class="language-python" data-trim>
|
316 |
|
317 |
+
class GlmMLP(nn.Module):
|
318 |
def __init__(self, config):
|
319 |
super().__init__()
|
320 |
|
|
|
332 |
return self.down_proj(up_states)
|
333 |
|
334 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
class GlmAttention(nn.Module):
|
336 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
337 |
|
|
|
556 |
activation.gelu_fast(y, x)
|
557 |
print(y)
|
558 |
</code></pre>
|
559 |
+
<p>Same Transformer code — now with a <strong>3× faster</strong> GELU on A100s.</p>
|
560 |
</section>
|
561 |
|
562 |
<section>
|
|
|
631 |
🤝 Symbiotic Growth
|
632 |
</p>
|
633 |
<p style="display: flex; align-items: center; gap: 0.4rem; font-size: 1.4rem;">
|
634 |
+
<img src="assets/transparent_PyTorch.png" alt="PyTorch" style="height: 1.4rem;" />
|
635 |
+
<code> PyTorch</code> & <code>transformers</code> grow together
|
636 |
<img src="assets/head_logo.svg" alt="Transformers" style="height: 1.4rem;" />
|
637 |
</p>
|
638 |
</div>
|