File size: 38,365 Bytes
cc12a3f aba9ae9 cc12a3f 0152260 acf78d1 cc12a3f aba9ae9 0ea3469 cc12a3f aba9ae9 b6e9667 aba9ae9 cc12a3f 0ea3469 aba9ae9 cc12a3f e0669ce cc12a3f aba9ae9 cc12a3f b6e9667 cc12a3f aba9ae9 0ea3469 aba9ae9 cc12a3f aba9ae9 cc12a3f 7524766 b6e9667 cc12a3f 0ea3469 cc12a3f b6e9667 5caebdc b3f455d 6de96e2 b3f455d 5caebdc 0ea3469 5caebdc 0152260 5caebdc 0ea3469 cc12a3f aba9ae9 cc12a3f aba9ae9 0152260 cc12a3f 0ea3469 cc12a3f b6e9667 0ea3469 aba9ae9 cc12a3f aba9ae9 cc12a3f 0152260 cc12a3f b6e9667 aba9ae9 0ea3469 aba9ae9 cc12a3f 0152260 cc12a3f aba9ae9 cc12a3f 0152260 0ea3469 aba9ae9 083dc3a 0152260 5caebdc aba9ae9 0ea3469 0152260 0ea3469 083dc3a 0ea3469 083dc3a 0ea3469 5caebdc aba9ae9 5caebdc aba9ae9 5caebdc 0152260 0ea3469 aba9ae9 cc12a3f aba9ae9 7691fc2 0ea3469 aba9ae9 cc12a3f aba9ae9 7691fc2 0ea3469 aba9ae9 0152260 aba9ae9 0152260 aba9ae9 7691fc2 0152260 0ea3469 0152260 5caebdc aba9ae9 0ea3469 aba9ae9 0152260 aba9ae9 0ea3469 0152260 46fbf29 0152260 0ea3469 0152260 0ea3469 0152260 aba9ae9 0152260 aba9ae9 0ea3469 0152260 0ea3469 0152260 aba9ae9 0152260 0ea3469 aba9ae9 0152260 aba9ae9 0152260 aba9ae9 0152260 0ea3469 0152260 0ea3469 0152260 5caebdc 0152260 5caebdc 0152260 5caebdc 0152260 5caebdc 0152260 5caebdc 0152260 5caebdc 0152260 5caebdc 0152260 5caebdc 0152260 5caebdc 0152260 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 |
import gradio as gr
import os
import sys
import json
import gc
import numpy as np
from vllm import LLM, SamplingParams
from jinja2 import Template
from typing import List
import types
from tooluniverse import ToolUniverse
from gradio import ChatMessage
from .toolrag import ToolRAGModel
import torch
import logging
# Configure logging with a more specific logger name
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger("TxAgent")
from .utils import NoRepeatSentenceProcessor, ReasoningTraceChecker, tool_result_format
class TxAgent:
def __init__(self, model_name,
rag_model_name,
tool_files_dict=None,
enable_finish=True,
enable_rag=False,
enable_summary=False,
init_rag_num=0,
step_rag_num=0,
summary_mode='step',
summary_skip_last_k=0,
summary_context_length=None,
force_finish=True,
avoid_repeat=True,
seed=None,
enable_checker=False,
enable_chat=False,
additional_default_tools=None):
self.model_name = model_name
self.tokenizer = None
self.terminators = None
self.rag_model_name = rag_model_name
self.tool_files_dict = tool_files_dict
self.model = None
self.rag_model = ToolRAGModel(rag_model_name)
self.tooluniverse = None
self.prompt_multi_step = "You are a helpful assistant that solves problems through step-by-step reasoning."
self.self_prompt = "Strictly follow the instruction."
self.chat_prompt = "You are a helpful assistant for user chat."
self.enable_finish = enable_finish
self.enable_rag = enable_rag
self.enable_summary = enable_summary
self.summary_mode = summary_mode
self.summary_skip_last_k = summary_skip_last_k
self.summary_context_length = summary_context_length
self.init_rag_num = init_rag_num
self.step_rag_num = step_rag_num
self.force_finish = force_finish
self.avoid_repeat = avoid_repeat
self.seed = seed
self.enable_checker = enable_checker
self.additional_default_tools = additional_default_tools
logger.info("TxAgent initialized with model: %s, RAG: %s", model_name, rag_model_name)
def init_model(self):
self.load_models()
self.load_tooluniverse()
def load_models(self, model_name=None):
if model_name is not None:
if model_name == self.model_name:
return f"The model {model_name} is already loaded."
self.model_name = model_name
self.model = LLM(
model=self.model_name,
dtype="float16",
max_model_len=131072,
max_num_batched_tokens=65536, # Increased for A100 80GB
max_num_seqs=512,
gpu_memory_utilization=0.95, # Higher utilization for better performance
trust_remote_code=True,
)
self.chat_template = Template(self.model.get_tokenizer().chat_template)
self.tokenizer = self.model.get_tokenizer()
logger.info(
"Model %s loaded with max_model_len=%d, max_num_batched_tokens=%d, gpu_memory_utilization=%.2f",
self.model_name, 131072, 32768, 0.9
)
return f"Model {model_name} loaded successfully."
def load_tooluniverse(self):
self.tooluniverse = ToolUniverse(tool_files=self.tool_files_dict)
self.tooluniverse.load_tools()
special_tools = self.tooluniverse.prepare_tool_prompts(
self.tooluniverse.tool_category_dicts["special_tools"])
self.special_tools_name = [tool['name'] for tool in special_tools]
logger.debug("ToolUniverse loaded with %d special tools", len(self.special_tools_name))
def load_tool_desc_embedding(self):
cache_path = os.path.join(os.path.dirname(self.tool_files_dict["new_tool"]), "tool_embeddings.pkl")
if os.path.exists(cache_path):
self.rag_model.load_cached_embeddings(cache_path)
else:
self.rag_model.load_tool_desc_embedding(self.tooluniverse)
self.rag_model.save_embeddings(cache_path)
logger.debug("Tool description embeddings loaded")
def rag_infer(self, query, top_k=5):
return self.rag_model.rag_infer(query, top_k)
def initialize_tools_prompt(self, call_agent, call_agent_level, message):
picked_tools_prompt = []
picked_tools_prompt = self.add_special_tools(
picked_tools_prompt, call_agent=call_agent)
if call_agent:
call_agent_level += 1
if call_agent_level >= 2:
call_agent = False
return picked_tools_prompt, call_agent_level
def initialize_conversation(self, message, conversation=None, history=None):
if conversation is None:
conversation = []
conversation = self.set_system_prompt(
conversation, self.prompt_multi_step)
if history:
for i in range(len(history)):
if history[i]['role'] == 'user':
conversation.append({"role": "user", "content": history[i]['content']})
elif history[i]['role'] == 'assistant':
conversation.append({"role": "assistant", "content": history[i]['content']})
conversation.append({"role": "user", "content": message})
logger.debug("Conversation initialized with %d messages", len(conversation))
return conversation
def tool_RAG(self, message=None,
picked_tool_names=None,
existing_tools_prompt=[],
rag_num=0,
return_call_result=False):
if not self.enable_rag:
return []
extra_factor = 10
if picked_tool_names is None:
assert picked_tool_names is not None or message is not None
picked_tool_names = self.rag_infer(
message, top_k=rag_num * extra_factor)
picked_tool_names_no_special = [tool for tool in picked_tool_names if tool not in self.special_tools_name]
picked_tool_names = picked_tool_names_no_special[:rag_num]
picked_tools = self.tooluniverse.get_tool_by_name(picked_tool_names)
picked_tools_prompt = self.tooluniverse.prepare_tool_prompts(picked_tools)
logger.debug("Retrieved %d tools via RAG", len(picked_tools_prompt))
if return_call_result:
return picked_tools_prompt, picked_tool_names
return picked_tools_prompt
def add_special_tools(self, tools, call_agent=False):
if self.enable_finish:
tools.append(self.tooluniverse.get_one_tool_by_one_name('Finish', return_prompt=True))
logger.debug("Finish tool added")
if call_agent:
tools.append(self.tooluniverse.get_one_tool_by_one_name('CallAgent', return_prompt=True))
logger.debug("CallAgent tool added")
return tools
def add_finish_tools(self, tools):
tools.append(self.tooluniverse.get_one_tool_by_one_name('Finish', return_prompt=True))
logger.debug("Finish tool added")
return tools
def set_system_prompt(self, conversation, sys_prompt):
if not conversation:
conversation.append({"role": "system", "content": sys_prompt})
else:
conversation[0] = {"role": "system", "content": sys_prompt}
return conversation
def run_function_call(self, fcall_str,
return_message=False,
existing_tools_prompt=None,
message_for_call_agent=None,
call_agent=False,
call_agent_level=None,
temperature=None):
try:
function_call_json, message = self.tooluniverse.extract_function_call_json(
fcall_str, return_message=return_message, verbose=False)
except Exception as e:
logger.error("Tool call parsing failed: %s", e)
function_call_json = []
message = fcall_str
call_results = []
special_tool_call = ''
if function_call_json:
if isinstance(function_call_json, list):
for i in range(len(function_call_json)):
logger.info("Tool Call: %s", function_call_json[i])
if function_call_json[i]["name"] == 'Finish':
special_tool_call = 'Finish'
break
elif function_call_json[i]["name"] == 'CallAgent':
if call_agent_level < 2 and call_agent:
solution_plan = function_call_json[i]['arguments']['solution']
full_message = (
message_for_call_agent +
"\nYou must follow the following plan to answer the question: " +
str(solution_plan)
)
call_result = self.run_multistep_agent(
full_message, temperature=temperature,
max_new_tokens=512, max_token=131072,
call_agent=False, call_agent_level=call_agent_level)
if call_result is None:
call_result = "⚠️ No content returned from sub-agent."
else:
call_result = call_result.split('[FinalAnswer]')[-1].strip()
else:
call_result = "Error: CallAgent disabled."
else:
call_result = self.tooluniverse.run_one_function(function_call_json[i])
call_id = self.tooluniverse.call_id_gen()
function_call_json[i]["call_id"] = call_id
logger.info("Tool Call Result: %s", call_result)
call_results.append({
"role": "tool",
"content": json.dumps({"tool_name": function_call_json[i]["name"], "content": call_result, "call_id": call_id})
})
else:
call_results.append({
"role": "tool",
"content": json.dumps({"content": "Invalid or no function call detected."})
})
revised_messages = [{
"role": "assistant",
"content": message.strip(),
"tool_calls": json.dumps(function_call_json)
}] + call_results
return revised_messages, existing_tools_prompt, special_tool_call
def run_function_call_stream(self, fcall_str,
return_message=False,
existing_tools_prompt=None,
message_for_call_agent=None,
call_agent=False,
call_agent_level=None,
temperature=None,
return_gradio_history=True):
try:
function_call_json, message = self.tooluniverse.extract_function_call_json(
fcall_str, return_message=return_message, verbose=False)
except Exception as e:
logger.error("Tool call parsing failed: %s", e)
function_call_json = []
message = fcall_str
call_results = []
special_tool_call = ''
if return_gradio_history:
gradio_history = []
if function_call_json:
if isinstance(function_call_json, list):
for i in range(len(function_call_json)):
if function_call_json[i]["name"] == 'Finish':
special_tool_call = 'Finish'
break
elif function_call_json[i]["name"] == 'DirectResponse':
call_result = function_call_json[i]['arguments']['respose']
special_tool_call = 'DirectResponse'
elif function_call_json[i]["name"] == 'RequireClarification':
call_result = function_call_json[i]['arguments']['unclear_question']
special_tool_call = 'RequireClarification'
elif function_call_json[i]["name"] == 'CallAgent':
if call_agent_level < 2 and call_agent:
solution_plan = function_call_json[i]['arguments']['solution']
full_message = (
message_for_call_agent +
"\nYou must follow the following plan to answer the question: " +
str(solution_plan)
)
sub_agent_task = "Sub TxAgent plan: " + str(solution_plan)
call_result = yield from self.run_gradio_chat(
full_message, history=[], temperature=temperature,
max_new_tokens=512, max_token=131072,
call_agent=False, call_agent_level=call_agent_level,
conversation=None, sub_agent_task=sub_agent_task)
if call_result is not None and isinstance(call_result, str):
call_result = call_result.split('[FinalAnswer]')[-1]
else:
call_result = "⚠️ No content returned from sub-agent."
else:
call_result = "Error: CallAgent disabled."
else:
call_result = self.tooluniverse.run_one_function(function_call_json[i])
call_id = self.tooluniverse.call_id_gen()
function_call_json[i]["call_id"] = call_id
call_results.append({
"role": "tool",
"content": json.dumps({"tool_name": function_call_json[i]["name"], "content": call_result, "call_id": call_id})
})
if return_gradio_history and function_call_json[i]["name"] != 'Finish':
metadata = {"title": f"🧰 {function_call_json[i]['name']}", "log": str(function_call_json[i]['arguments'])}
gradio_history.append(ChatMessage(role="assistant", content=str(call_result), metadata=metadata))
else:
call_results.append({
"role": "tool",
"content": json.dumps({"content": "Invalid or no function call detected."})
})
revised_messages = [{
"role": "assistant",
"content": message.strip(),
"tool_calls": json.dumps(function_call_json)
}] + call_results
if return_gradio_history:
return revised_messages, existing_tools_prompt, special_tool_call, gradio_history
return revised_messages, existing_tools_prompt, special_tool_call
def get_answer_based_on_unfinished_reasoning(self, conversation, temperature, max_new_tokens, max_token, outputs=None):
if conversation[-1]['role'] == 'assistant':
conversation.append(
{'role': 'tool', 'content': 'Errors occurred during function call; provide final answer with current information.'})
finish_tools_prompt = self.add_finish_tools([])
last_outputs_str = self.llm_infer(
messages=conversation,
temperature=temperature,
tools=finish_tools_prompt,
output_begin_string='[FinalAnswer]',
skip_special_tokens=True,
max_new_tokens=max_new_tokens,
max_token=max_token)
logger.info("Unfinished reasoning answer: %s", last_outputs_str[:100])
return last_outputs_str
def run_multistep_agent(self, message: str,
temperature: float,
max_new_tokens: int,
max_token: int,
max_round: int = 5,
call_agent=False,
call_agent_level=0):
logger.info("Starting multistep agent for message: %s", message[:100])
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
call_agent, call_agent_level, message)
conversation = self.initialize_conversation(message)
outputs = []
last_outputs = []
next_round = True
current_round = 0
token_overflow = False
enable_summary = False
last_status = {}
while next_round and current_round < max_round:
current_round += 1
if len(outputs) > 0:
function_call_messages, picked_tools_prompt, special_tool_call = self.run_function_call(
last_outputs, return_message=True,
existing_tools_prompt=picked_tools_prompt,
message_for_call_agent=message,
call_agent=call_agent,
call_agent_level=call_agent_level,
temperature=temperature)
if special_tool_call == 'Finish':
next_round = False
conversation.extend(function_call_messages)
content = function_call_messages[0]['content']
if content is None:
return "❌ No content returned after Finish tool call."
return content.split('[FinalAnswer]')[-1]
if (self.enable_summary or token_overflow) and not call_agent:
enable_summary = True
last_status = self.function_result_summary(
conversation, status=last_status, enable_summary=enable_summary)
if function_call_messages:
conversation.extend(function_call_messages)
outputs.append(tool_result_format(function_call_messages))
else:
next_round = False
conversation.extend([{"role": "assistant", "content": ''.join(last_outputs)}])
return ''.join(last_outputs).replace("</s>", "")
last_outputs = []
outputs.append("### TxAgent:\n")
last_outputs_str, token_overflow = self.llm_infer(
messages=conversation,
temperature=temperature,
tools=picked_tools_prompt,
skip_special_tokens=False,
max_new_tokens=2048,
max_token=131072,
check_token_status=True)
if last_outputs_str is None:
logger.warning("Token limit exceeded")
if self.force_finish:
return self.get_answer_based_on_unfinished_reasoning(
conversation, temperature, max_new_tokens, max_token)
return "❌ Token limit exceeded."
last_outputs.append(last_outputs_str)
if max_round == current_round:
logger.warning("Max rounds exceeded")
if self.force_finish:
return self.get_answer_based_on_unfinished_reasoning(
conversation, temperature, max_new_tokens, max_token)
return None
def build_logits_processor(self, messages, llm):
logger.warning("Logits processor disabled due to vLLM V1 limitation")
return None
def llm_infer(self, messages, temperature=0.1, tools=None,
output_begin_string=None, max_new_tokens=512,
max_token=131072, skip_special_tokens=True,
model=None, tokenizer=None, terminators=None,
seed=None, check_token_status=False):
if model is None:
model = self.model
logits_processor = self.build_logits_processor(messages, model)
sampling_params = SamplingParams(
temperature=temperature,
max_tokens=max_new_tokens,
seed=seed if seed is not None else self.seed,
)
prompt = self.chat_template.render(
messages=messages, tools=tools, add_generation_prompt=True)
if output_begin_string is not None:
prompt += output_begin_string
if check_token_status and max_token is not None:
token_overflow = False
num_input_tokens = len(self.tokenizer.encode(prompt, add_special_tokens=False))
logger.info("Input prompt tokens: %d, max_token: %d", num_input_tokens, max_token)
if num_input_tokens > max_token:
torch.cuda.empty_cache()
gc.collect()
logger.warning("Token overflow: %d > %d", num_input_tokens, max_token)
return None, True
output = model.generate(prompt, sampling_params=sampling_params)
output_text = output[0].outputs[0].text
output_tokens = len(self.tokenizer.encode(output_text, add_special_tokens=False))
logger.debug("Inference output: %s (output tokens: %d)", output_text[:100], output_tokens)
torch.cuda.empty_cache()
gc.collect()
if check_token_status and max_token is not None:
return output_text, token_overflow
return output_text
def run_self_agent(self, message: str,
temperature: float,
max_new_tokens: int,
max_token: int):
logger.info("Starting self agent")
conversation = self.set_system_prompt([], self.self_prompt)
conversation.append({"role": "user", "content": message})
return self.llm_infer(
messages=conversation,
temperature=temperature,
tools=None,
max_new_tokens=max_new_tokens,
max_token=max_token)
def run_chat_agent(self, message: str,
temperature: float,
max_new_tokens: int,
max_token: int):
logger.info("Starting chat agent")
conversation = self.set_system_prompt([], self.chat_prompt)
conversation.append({"role": "user", "content": message})
return self.llm_infer(
messages=conversation,
temperature=temperature,
tools=None,
max_new_tokens=max_new_tokens,
max_token=max_token)
def run_format_agent(self, message: str,
answer: str,
temperature: float,
max_new_tokens: int,
max_token: int):
logger.info("Starting format agent")
if '[FinalAnswer]' in answer:
possible_final_answer = answer.split("[FinalAnswer]")[-1]
elif "\n\n" in answer:
possible_final_answer = answer.split("\n\n")[-1]
else:
possible_final_answer = answer.strip()
if len(possible_final_answer) == 1 and possible_final_answer in ['A', 'B', 'C', 'D', 'E']:
return possible_final_answer
elif len(possible_final_answer) > 1 and possible_final_answer[1] == ':' and possible_final_answer[0] in ['A', 'B', 'C', 'D', 'E']:
return possible_final_answer[0]
conversation = self.set_system_prompt(
[], "Transform the agent's answer to a single letter: 'A', 'B', 'C', 'D'.")
conversation.append({"role": "user", "content": message +
"\nAgent's answer: " + answer + "\nAnswer (must be a letter):"})
return self.llm_infer(
messages=conversation,
temperature=temperature,
tools=None,
max_new_tokens=max_new_tokens,
max_token=max_token)
def run_summary_agent(self, thought_calls: str,
function_response: str,
temperature: float,
max_new_tokens: int,
max_token: int):
logger.info("Summarizing tool result")
prompt = f"""Thought and function calls:
{thought_calls}
Function calls' responses:
\"\"\"
{function_response}
\"\"\"
Summarize the function calls' l responses in one sentence with all necessary information.
"""
conversation = [{"role": "user", "content": prompt}]
output = self.llm_infer(
messages=conversation,
temperature=temperature,
tools=None,
max_new_tokens=max_new_tokens,
max_token=max_token)
if '[' in output:
output = output.split('[')[0]
return output
def function_result_summary(self, input_list, status, enable_summary):
if 'tool_call_step' not in status:
status['tool_call_step'] = 0
for idx in range(len(input_list)):
pos_id = len(input_list) - idx - 1
if input_list[pos_id]['role'] == 'assistant' and 'tool_calls' in input_list[pos_id]:
break
status['step'] = status.get('step', 0) + 1
if not enable_summary:
return status
status['summarized_index'] = status.get('summarized_index', 0)
status['summarized_step'] = status.get('summarized_step', 0)
status['previous_length'] = status.get('previous_length', 0)
status['history'] = status.get('history', [])
function_response = ''
idx = status['summarized_index']
this_thought_calls = None
while idx < len(input_list):
if (self.summary_mode == 'step' and status['summarized_step'] < status['step'] - status['tool_call_step'] - self.summary_skip_last_k) or \
(self.summary_mode == 'length' and status['previous_length'] > self.summary_context_length):
if input_list[idx]['role'] == 'assistant':
if function_response:
status['summarized_step'] += 1
result_summary = self.run_summary_agent(
thought_calls=this_thought_calls,
function_response=function_response,
temperature=0.1,
max_new_tokens=512,
max_token=131072)
input_list.insert(last_call_idx + 1, {'role': 'tool', 'content': result_summary})
status['summarized_index'] = last_call_idx + 2
idx += 1
last_call_idx = idx
this_thought_calls = input_list[idx]['content'] + input_list[idx]['tool_calls']
function_response = ''
elif input_list[idx]['role'] == 'tool' and this_thought_calls is not None:
function_response += input_list[idx]['content']
del input_list[idx]
idx -= 1
else:
break
idx += 1
if function_response:
status['summarized_step'] += 1
result_summary = self.run_summary_agent(
thought_calls=this_thought_calls,
function_response=function_response,
temperature=0.1,
max_new_tokens=512,
max_token=131072)
tool_calls = json.loads(input_list[last_call_idx]['tool_calls'])
for tool_call in tool_calls:
del tool_call['call_id']
input_list[last_call_idx]['tool_calls'] = json.dumps(tool_calls)
input_list.insert(last_call_idx + 1, {'role': 'tool', 'content': result_summary})
status['summarized_index'] = last_call_idx + 2
return status
def update_parameters(self, **kwargs):
updated_attributes = {}
for key, value in kwargs.items():
if hasattr(self, key):
setattr(self, key, value)
updated_attributes[key] = value
logger.info("Updated parameters: %s", updated_attributes)
return updated_attributes
def run_gradio_chat(self, message: str,
history: list,
temperature: float,
max_new_tokens: int = 2048,
max_token: int = 131072,
call_agent: bool = False,
conversation: gr.State = None,
max_round: int = 5,
seed: int = None,
call_agent_level: int = 0,
sub_agent_task: str = None,
uploaded_files: list = None):
logger.info("Chat started, message: %s", message[:100])
if not message or len(message.strip()) < 5:
yield "Please provide a valid message or upload files to analyze."
return
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
call_agent, call_agent_level, message)
conversation = self.initialize_conversation(
message, conversation, history)
history = []
last_outputs = []
next_round = True
current_round = 0
enable_summary = False
last_status = {}
token_overflow = False
try:
while next_round and current_round < max_round:
current_round += 1
logger.debug("Starting round %d/%d", current_round, max_round)
if last_outputs:
function_call_messages, picked_tools_prompt, special_tool_call, current_gradio_history = yield from self.run_function_call_stream(
last_outputs, return_message=True,
existing_tools_prompt=picked_tools_prompt,
message_for_call_agent=message,
call_agent=call_agent,
call_agent_level=call_agent_level,
temperature=temperature)
history.extend(current_gradio_history)
if special_tool_call == 'Finish':
logger.info("Finish tool called, ending chat")
yield history
next_round = False
conversation.extend(function_call_messages)
content = function_call_messages[0]['content']
if content:
return content
return "No content returned after Finish tool call."
elif special_tool_call in ['RequireClarification', 'DirectResponse']:
last_msg = history[-1] if history else ChatMessage(role="assistant", content="Response needed.")
history.append(ChatMessage(role="assistant", content=last_msg.content))
logger.info("Special tool %s called, ending chat", special_tool_call)
yield history
next_round = False
return last_msg.content
if (self.enable_summary or token_overflow) and not call_agent:
enable_summary = True
last_status = self.function_result_summary(
conversation, status=last_status, enable_summary=enable_summary)
if function_call_messages:
conversation.extend(function_call_messages)
yield history
else:
next_round = False
conversation.append({"role": "assistant", "content": ''.join(last_outputs)})
logger.info("No function call messages, ending chat")
return ''.join(last_outputs).replace("</s>", "")
last_outputs = []
last_outputs_str, token_overflow = self.llm_infer(
messages=conversation,
temperature=temperature,
tools=picked_tools_prompt,
skip_special_tokens=False,
max_new_tokens=max_new_tokens,
max_token=max_token,
seed=seed,
check_token_status=True)
if last_outputs_str is None:
logger.warning("Token limit exceeded")
if self.force_finish:
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
conversation, temperature, max_new_tokens, max_token)
history.append(ChatMessage(role="assistant", content=last_outputs_str.strip()))
yield history
return last_outputs_str
error_msg = "Token limit exceeded."
history.append(ChatMessage(role="assistant", content=error_msg))
yield history
return error_msg
last_thought = last_outputs_str.split("[TOOL_CALLS]")[0]
for msg in history:
if msg.metadata is not None:
msg.metadata['status'] = 'done'
if '[FinalAnswer]' in last_thought:
parts = last_thought.split('[FinalAnswer]', 1)
final_thought, final_answer = parts if len(parts) == 2 else (last_thought, "")
history.append(ChatMessage(role="assistant", content=final_thought.strip()))
yield history
history.append(ChatMessage(role="assistant", content="**🧠 Final Analysis:**\n" + final_answer.strip()))
logger.info("Final answer provided: %s", final_answer[:100])
yield history
next_round = False # Ensure we exit after final answer
return final_answer
else:
history.append(ChatMessage(role="assistant", content=last_thought))
yield history
last_outputs.append(last_outputs_str)
if next_round:
if self.force_finish:
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
conversation, temperature, max_new_tokens, max_token)
parts = last_outputs_str.split('[FinalAnswer]', 1)
final_thought, final_answer = parts if len(parts) == 2 else (last_outputs_str, "")
history.append(ChatMessage(role="assistant", content=final_thought.strip()))
yield history
history.append(ChatMessage(role="assistant", content="**🧠 Final Analysis:**\n" + final_answer.strip()))
logger.info("Forced final answer: %s", final_answer[:100])
yield history
return final_answer
else:
error_msg = "Reasoning rounds exceeded limit."
history.append(ChatMessage(role="assistant", content=error_msg))
yield history
return error_msg
except Exception as e:
logger.error("Exception in run_gradio_chat: %s", e, exc_info=True)
error_msg = f"Error: {e}"
history.append(ChatMessage(role="assistant", content=error_msg))
yield history
if self.force_finish:
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
conversation, temperature, max_new_tokens, max_token)
parts = last_outputs_str.split('[FinalAnswer]', 1)
final_thought, final_answer = parts if len(parts) == 2 else (last_outputs_str, "")
history.append(ChatMessage(role="assistant", content=final_thought.strip()))
yield history
history.append(ChatMessage(role="assistant", content="**🧠 Final Analysis:**\n" + final_answer.strip()))
logger.info("Forced final answer after error: %s", final_answer[:100])
yield history
return final_answer
return error_msg
def run_gradio_chat_batch(self, messages: List[str],
temperature: float,
max_new_tokens: int = 2048,
max_token: int = 131072,
call_agent: bool = False,
conversation: List = None,
max_round: int = 5,
seed: int = None,
call_agent_level: int = 0):
"""Run batch inference for multiple messages."""
logger.info("Starting batch chat for %d messages", len(messages))
batch_results = []
for message in messages:
# Initialize conversation for each message
conv = self.initialize_conversation(message, conversation, history=None)
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
call_agent, call_agent_level, message)
# Run single inference for simplicity (extend for multi-round if needed)
output, token_overflow = self.llm_infer(
messages=conv,
temperature=temperature,
tools=picked_tools_prompt,
max_new_tokens=max_new_tokens,
max_token=max_token,
skip_special_tokens=False,
seed=seed,
check_token_status=True
)
if output is None:
logger.warning("Token limit exceeded for message: %s", message[:100])
batch_results.append("Token limit exceeded.")
else:
batch_results.append(output)
logger.info("Batch chat completed for %d messages", len(messages))
return batch_results |