Update src/txagent/txagent.py
Browse files- src/txagent/txagent.py +278 -356
src/txagent/txagent.py
CHANGED
@@ -24,17 +24,17 @@ class TxAgent:
|
|
24 |
rag_model_name,
|
25 |
tool_files_dict=None,
|
26 |
enable_finish=True,
|
27 |
-
enable_rag=
|
28 |
enable_summary=False,
|
29 |
-
init_rag_num=
|
30 |
-
step_rag_num=
|
31 |
summary_mode='step',
|
32 |
summary_skip_last_k=0,
|
33 |
summary_context_length=None,
|
34 |
force_finish=True,
|
35 |
avoid_repeat=True,
|
36 |
seed=None,
|
37 |
-
enable_checker=False,
|
38 |
enable_chat=False,
|
39 |
additional_default_tools=None):
|
40 |
self.model_name = model_name
|
@@ -45,9 +45,9 @@ class TxAgent:
|
|
45 |
self.model = None
|
46 |
self.rag_model = ToolRAGModel(rag_model_name)
|
47 |
self.tooluniverse = None
|
48 |
-
self.prompt_multi_step = "You are a
|
49 |
-
self.self_prompt = "
|
50 |
-
self.chat_prompt = "You are a helpful assistant for
|
51 |
self.enable_finish = enable_finish
|
52 |
self.enable_rag = enable_rag
|
53 |
self.enable_summary = enable_summary
|
@@ -61,23 +61,28 @@ class TxAgent:
|
|
61 |
self.seed = seed
|
62 |
self.enable_checker = enable_checker
|
63 |
self.additional_default_tools = additional_default_tools
|
64 |
-
logger.
|
65 |
|
66 |
def init_model(self):
|
67 |
self.load_models()
|
68 |
self.load_tooluniverse()
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
def load_models(self, model_name=None):
|
71 |
-
if model_name is not None:
|
72 |
-
|
73 |
-
|
74 |
self.model_name = model_name
|
75 |
|
76 |
-
self.model = LLM(model=self.model_name, dtype="float16"
|
77 |
self.chat_template = Template(self.model.get_tokenizer().chat_template)
|
78 |
self.tokenizer = self.model.get_tokenizer()
|
79 |
logger.info("Model %s loaded successfully", self.model_name)
|
80 |
-
return f"Model {model_name} loaded successfully."
|
81 |
|
82 |
def load_tooluniverse(self):
|
83 |
self.tooluniverse = ToolUniverse(tool_files=self.tool_files_dict)
|
@@ -88,12 +93,7 @@ class TxAgent:
|
|
88 |
logger.debug("ToolUniverse loaded with %d special tools", len(self.special_tools_name))
|
89 |
|
90 |
def load_tool_desc_embedding(self):
|
91 |
-
|
92 |
-
if os.path.exists(cache_path):
|
93 |
-
self.rag_model.load_cached_embeddings(cache_path)
|
94 |
-
else:
|
95 |
-
self.rag_model.load_tool_desc_embedding(self.tooluniverse)
|
96 |
-
self.rag_model.save_embeddings(cache_path)
|
97 |
logger.debug("Tool description embeddings loaded")
|
98 |
|
99 |
def rag_infer(self, query, top_k=5):
|
@@ -107,43 +107,39 @@ class TxAgent:
|
|
107 |
call_agent_level += 1
|
108 |
if call_agent_level >= 2:
|
109 |
call_agent = False
|
|
|
|
|
|
|
|
|
110 |
return picked_tools_prompt, call_agent_level
|
111 |
|
112 |
def initialize_conversation(self, message, conversation=None, history=None):
|
113 |
if conversation is None:
|
114 |
conversation = []
|
115 |
|
116 |
-
conversation = self.set_system_prompt(
|
117 |
-
conversation, self.prompt_multi_step)
|
118 |
if history:
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
conversation.append({"role": "assistant", "content": history[i]['content']})
|
124 |
conversation.append({"role": "user", "content": message})
|
125 |
logger.debug("Conversation initialized with %d messages", len(conversation))
|
126 |
return conversation
|
127 |
|
128 |
-
def tool_RAG(self, message=None,
|
129 |
-
|
130 |
-
|
131 |
-
rag_num=0,
|
132 |
-
return_call_result=False):
|
133 |
-
if not self.enable_rag:
|
134 |
-
return []
|
135 |
-
extra_factor = 10
|
136 |
if picked_tool_names is None:
|
137 |
-
|
138 |
-
picked_tool_names = self.rag_infer(
|
139 |
-
message, top_k=rag_num * extra_factor)
|
140 |
-
|
141 |
-
picked_tool_names_no_special = [tool for tool in picked_tool_names if tool not in self.special_tools_name]
|
142 |
-
picked_tool_names = picked_tool_names_no_special[:rag_num]
|
143 |
|
|
|
|
|
|
|
|
|
144 |
picked_tools = self.tooluniverse.get_tool_by_name(picked_tool_names)
|
145 |
picked_tools_prompt = self.tooluniverse.prepare_tool_prompts(picked_tools)
|
146 |
-
logger.debug("
|
147 |
if return_call_result:
|
148 |
return picked_tools_prompt, picked_tool_names
|
149 |
return picked_tools_prompt
|
@@ -155,6 +151,15 @@ class TxAgent:
|
|
155 |
if call_agent:
|
156 |
tools.append(self.tooluniverse.get_one_tool_by_one_name('CallAgent', return_prompt=True))
|
157 |
logger.debug("CallAgent tool added")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
return tools
|
159 |
|
160 |
def add_finish_tools(self, tools):
|
@@ -169,179 +174,135 @@ class TxAgent:
|
|
169 |
conversation[0] = {"role": "system", "content": sys_prompt}
|
170 |
return conversation
|
171 |
|
172 |
-
def run_function_call(self, fcall_str,
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
call_agent_level=None,
|
178 |
-
temperature=None):
|
179 |
-
try:
|
180 |
-
function_call_json, message = self.tooluniverse.extract_function_call_json(
|
181 |
-
fcall_str, return_message=return_message, verbose=False)
|
182 |
-
except Exception as e:
|
183 |
-
logger.error("Tool call parsing failed: %s", e)
|
184 |
-
function_call_json = []
|
185 |
-
message = fcall_str
|
186 |
-
|
187 |
call_results = []
|
188 |
special_tool_call = ''
|
189 |
if function_call_json:
|
190 |
-
if isinstance(function_call_json, list):
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
call_results.append({
|
220 |
-
"role": "tool",
|
221 |
-
"content": json.dumps({"tool_name": function_call_json[i]["name"], "content": call_result, "call_id": call_id})
|
222 |
-
})
|
223 |
else:
|
224 |
call_results.append({
|
225 |
"role": "tool",
|
226 |
-
"content": json.dumps({"content": "Invalid
|
227 |
})
|
228 |
|
229 |
revised_messages = [{
|
230 |
"role": "assistant",
|
231 |
-
"content": message.strip(),
|
232 |
"tool_calls": json.dumps(function_call_json)
|
233 |
}] + call_results
|
234 |
return revised_messages, existing_tools_prompt, special_tool_call
|
235 |
|
236 |
-
def run_function_call_stream(self, fcall_str,
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
temperature=None,
|
243 |
-
return_gradio_history=True):
|
244 |
-
try:
|
245 |
-
function_call_json, message = self.tooluniverse.extract_function_call_json(
|
246 |
-
fcall_str, return_message=return_message, verbose=False)
|
247 |
-
except Exception as e:
|
248 |
-
logger.error("Tool call parsing failed: %s", e)
|
249 |
-
function_call_json = []
|
250 |
-
message = fcall_str
|
251 |
-
|
252 |
call_results = []
|
253 |
special_tool_call = ''
|
254 |
-
if return_gradio_history
|
255 |
-
gradio_history = []
|
256 |
if function_call_json:
|
257 |
-
if isinstance(function_call_json, list):
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
metadata
|
298 |
-
|
299 |
else:
|
300 |
call_results.append({
|
301 |
"role": "tool",
|
302 |
-
"content": json.dumps({"content": "Invalid
|
303 |
})
|
304 |
|
305 |
revised_messages = [{
|
306 |
"role": "assistant",
|
307 |
-
"content": message.strip(),
|
308 |
"tool_calls": json.dumps(function_call_json)
|
309 |
}] + call_results
|
310 |
-
|
311 |
-
return revised_messages, existing_tools_prompt, special_tool_call, gradio_history
|
312 |
-
return revised_messages, existing_tools_prompt, special_tool_call
|
313 |
|
314 |
-
def get_answer_based_on_unfinished_reasoning(self, conversation, temperature, max_new_tokens, max_token
|
315 |
-
# Truncate conversation to fit within max_token
|
316 |
-
tokenized = self.tokenizer.encode(json.dumps(conversation), add_special_tokens=False)
|
317 |
-
if len(tokenized) > max_token - 100:
|
318 |
-
logger.warning("Truncating conversation to fit max_token=%d", max_token)
|
319 |
-
while len(tokenized) > max_token - 100 and len(conversation) > 1:
|
320 |
-
conversation.pop(1) # Keep system prompt and latest message
|
321 |
-
tokenized = self.tokenizer.encode(json.dumps(conversation), add_special_tokens=False)
|
322 |
if conversation[-1]['role'] == 'assistant':
|
323 |
conversation.append(
|
324 |
-
{'role': 'tool', 'content': 'Errors occurred
|
325 |
finish_tools_prompt = self.add_finish_tools([])
|
326 |
-
|
327 |
-
messages=conversation,
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
logger.
|
335 |
-
return last_outputs_str
|
336 |
-
|
337 |
-
def run_multistep_agent(self, message: str,
|
338 |
-
temperature: float,
|
339 |
-
max_new_tokens: int,
|
340 |
-
max_token: int,
|
341 |
-
max_round: int = 5,
|
342 |
-
call_agent=False,
|
343 |
-
call_agent_level=0):
|
344 |
-
logger.info("Starting multistep agent for message: %s", message[:100])
|
345 |
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
346 |
call_agent, call_agent_level, message)
|
347 |
conversation = self.initialize_conversation(message)
|
@@ -353,24 +314,22 @@ class TxAgent:
|
|
353 |
enable_summary = False
|
354 |
last_status = {}
|
355 |
|
|
|
|
|
|
|
356 |
while next_round and current_round < max_round:
|
357 |
current_round += 1
|
358 |
-
if
|
359 |
function_call_messages, picked_tools_prompt, special_tool_call = self.run_function_call(
|
360 |
-
last_outputs, return_message=True,
|
361 |
-
|
362 |
-
|
363 |
-
call_agent=call_agent,
|
364 |
-
call_agent_level=call_agent_level,
|
365 |
-
temperature=temperature)
|
366 |
|
367 |
if special_tool_call == 'Finish':
|
368 |
next_round = False
|
369 |
conversation.extend(function_call_messages)
|
370 |
content = function_call_messages[0]['content']
|
371 |
-
if content
|
372 |
-
return "❌ No content returned after Finish tool call."
|
373 |
-
return content.split('[FinalAnswer]')[-1]
|
374 |
|
375 |
if (self.enable_summary or token_overflow) and not call_agent:
|
376 |
enable_summary = True
|
@@ -382,28 +341,26 @@ class TxAgent:
|
|
382 |
outputs.append(tool_result_format(function_call_messages))
|
383 |
else:
|
384 |
next_round = False
|
385 |
-
conversation.extend([{"role": "assistant", "content": ''.join(last_outputs)}])
|
386 |
return ''.join(last_outputs).replace("</s>", "")
|
387 |
|
|
|
|
|
|
|
|
|
|
|
|
|
388 |
last_outputs = []
|
389 |
-
outputs.append("### TxAgent:\n")
|
390 |
last_outputs_str, token_overflow = self.llm_infer(
|
391 |
-
messages=conversation,
|
392 |
-
|
393 |
-
tools=picked_tools_prompt,
|
394 |
-
skip_special_tokens=False,
|
395 |
-
max_new_tokens=max_new_tokens,
|
396 |
-
max_token=max_token,
|
397 |
-
check_token_status=True)
|
398 |
if last_outputs_str is None:
|
399 |
-
logger.warning("Token limit exceeded")
|
400 |
if self.force_finish:
|
401 |
return self.get_answer_based_on_unfinished_reasoning(
|
402 |
conversation, temperature, max_new_tokens, max_token)
|
403 |
return "❌ Token limit exceeded."
|
404 |
last_outputs.append(last_outputs_str)
|
405 |
|
406 |
-
if
|
407 |
logger.warning("Max rounds exceeded")
|
408 |
if self.force_finish:
|
409 |
return self.get_answer_based_on_unfinished_reasoning(
|
@@ -413,16 +370,16 @@ class TxAgent:
|
|
413 |
def build_logits_processor(self, messages, llm):
|
414 |
tokenizer = llm.get_tokenizer()
|
415 |
if self.avoid_repeat and len(messages) > 2:
|
416 |
-
assistant_messages = [
|
|
|
|
|
417 |
forbidden_ids = [tokenizer.encode(msg, add_special_tokens=False) for msg in assistant_messages]
|
418 |
return [NoRepeatSentenceProcessor(forbidden_ids, 5)]
|
419 |
return None
|
420 |
|
421 |
-
def llm_infer(self, messages, temperature=0.1, tools=None,
|
422 |
-
|
423 |
-
|
424 |
-
model=None, tokenizer=None, terminators=None,
|
425 |
-
seed=None, check_token_status=False):
|
426 |
if model is None:
|
427 |
model = self.model
|
428 |
|
@@ -431,108 +388,73 @@ class TxAgent:
|
|
431 |
temperature=temperature,
|
432 |
max_tokens=max_new_tokens,
|
433 |
seed=seed if seed is not None else self.seed,
|
|
|
434 |
)
|
435 |
|
436 |
-
prompt = self.chat_template.render(
|
437 |
-
|
438 |
-
if output_begin_string is not None:
|
439 |
prompt += output_begin_string
|
440 |
|
441 |
-
if check_token_status and max_token
|
442 |
-
token_overflow = False
|
443 |
num_input_tokens = len(self.tokenizer.encode(prompt, return_tensors="pt")[0])
|
444 |
if num_input_tokens > max_token:
|
445 |
torch.cuda.empty_cache()
|
446 |
gc.collect()
|
447 |
logger.info("Token overflow: %d > %d", num_input_tokens, max_token)
|
448 |
return None, True
|
|
|
449 |
|
450 |
output = model.generate(prompt, sampling_params=sampling_params)
|
451 |
output = output[0].outputs[0].text
|
452 |
logger.debug("Inference output: %s", output[:100])
|
453 |
-
torch.cuda.empty_cache()
|
454 |
-
|
455 |
-
|
456 |
-
return output, token_overflow
|
457 |
return output
|
458 |
|
459 |
-
def run_self_agent(self, message: str,
|
460 |
-
|
461 |
-
max_new_tokens: int,
|
462 |
-
max_token: int):
|
463 |
-
logger.info("Starting self agent")
|
464 |
conversation = self.set_system_prompt([], self.self_prompt)
|
465 |
conversation.append({"role": "user", "content": message})
|
466 |
-
return self.llm_infer(
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
max_token=max_token)
|
472 |
-
|
473 |
-
def run_chat_agent(self, message: str,
|
474 |
-
temperature: float,
|
475 |
-
max_new_tokens: int,
|
476 |
-
max_token: int):
|
477 |
-
logger.info("Starting chat agent")
|
478 |
conversation = self.set_system_prompt([], self.chat_prompt)
|
479 |
conversation.append({"role": "user", "content": message})
|
480 |
-
return self.llm_infer(
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
max_token=max_token)
|
486 |
-
|
487 |
-
def run_format_agent(self, message: str,
|
488 |
-
answer: str,
|
489 |
-
temperature: float,
|
490 |
-
max_new_tokens: int,
|
491 |
-
max_token: int):
|
492 |
-
logger.info("Starting format agent")
|
493 |
if '[FinalAnswer]' in answer:
|
494 |
possible_final_answer = answer.split("[FinalAnswer]")[-1]
|
495 |
elif "\n\n" in answer:
|
496 |
possible_final_answer = answer.split("\n\n")[-1]
|
497 |
else:
|
498 |
possible_final_answer = answer.strip()
|
499 |
-
|
500 |
-
|
|
|
501 |
elif len(possible_final_answer) > 1 and possible_final_answer[1] == ':' and possible_final_answer[0] in ['A', 'B', 'C', 'D', 'E']:
|
502 |
return possible_final_answer[0]
|
503 |
|
504 |
conversation = self.set_system_prompt(
|
505 |
-
[], "Transform the
|
506 |
-
conversation.append({"role": "user", "content": message
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
function_response: str,
|
517 |
-
temperature: float,
|
518 |
-
max_new_tokens: int,
|
519 |
-
max_token: int):
|
520 |
-
logger.info("Summarizing tool result")
|
521 |
-
prompt = f"""Thought and function calls:
|
522 |
-
{thought_calls}
|
523 |
-
Function calls' responses:
|
524 |
-
\"\"\"
|
525 |
-
{function_response}
|
526 |
-
\"\"\"
|
527 |
-
Summarize the function calls' responses in one sentence with all necessary information.
|
528 |
-
"""
|
529 |
conversation = [{"role": "user", "content": prompt}]
|
530 |
-
output = self.llm_infer(
|
531 |
-
|
532 |
-
temperature=temperature,
|
533 |
-
tools=None,
|
534 |
-
max_new_tokens=max_new_tokens,
|
535 |
-
max_token=max_token)
|
536 |
if '[' in output:
|
537 |
output = output.split('[')[0]
|
538 |
return output
|
@@ -540,43 +462,55 @@ Summarize the function calls' responses in one sentence with all necessary infor
|
|
540 |
def function_result_summary(self, input_list, status, enable_summary):
|
541 |
if 'tool_call_step' not in status:
|
542 |
status['tool_call_step'] = 0
|
|
|
|
|
|
|
|
|
543 |
for idx in range(len(input_list)):
|
544 |
pos_id = len(input_list) - idx - 1
|
545 |
if input_list[pos_id]['role'] == 'assistant' and 'tool_calls' in input_list[pos_id]:
|
|
|
|
|
546 |
break
|
547 |
|
548 |
-
status['step'] = status.get('step', 0) + 1
|
549 |
if not enable_summary:
|
550 |
return status
|
551 |
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
556 |
|
557 |
-
function_response = ''
|
558 |
idx = status['summarized_index']
|
|
|
559 |
this_thought_calls = None
|
560 |
-
|
561 |
while idx < len(input_list):
|
562 |
if (self.summary_mode == 'step' and status['summarized_step'] < status['step'] - status['tool_call_step'] - self.summary_skip_last_k) or \
|
563 |
(self.summary_mode == 'length' and status['previous_length'] > self.summary_context_length):
|
564 |
if input_list[idx]['role'] == 'assistant':
|
565 |
-
if
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
|
|
580 |
function_response += input_list[idx]['content']
|
581 |
del input_list[idx]
|
582 |
idx -= 1
|
@@ -587,16 +521,14 @@ Summarize the function calls' responses in one sentence with all necessary infor
|
|
587 |
if function_response:
|
588 |
status['summarized_step'] += 1
|
589 |
result_summary = self.run_summary_agent(
|
590 |
-
thought_calls=this_thought_calls,
|
591 |
-
|
592 |
-
temperature=0.1,
|
593 |
-
max_new_tokens=512,
|
594 |
-
max_token=2048)
|
595 |
tool_calls = json.loads(input_list[last_call_idx]['tool_calls'])
|
596 |
for tool_call in tool_calls:
|
597 |
del tool_call['call_id']
|
598 |
input_list[last_call_idx]['tool_calls'] = json.dumps(tool_calls)
|
599 |
-
input_list.insert(
|
|
|
600 |
status['summarized_index'] = last_call_idx + 2
|
601 |
|
602 |
return status
|
@@ -607,32 +539,27 @@ Summarize the function calls' responses in one sentence with all necessary infor
|
|
607 |
if hasattr(self, key):
|
608 |
setattr(self, key, value)
|
609 |
updated_attributes[key] = value
|
610 |
-
logger.
|
611 |
return updated_attributes
|
612 |
|
613 |
-
def run_gradio_chat(self, message: str,
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
max_token: int,
|
618 |
-
call_agent: bool,
|
619 |
-
conversation: gr.State,
|
620 |
-
max_round: int = 5,
|
621 |
-
seed: int = None,
|
622 |
-
call_agent_level: int = 0,
|
623 |
-
sub_agent_task: str = None,
|
624 |
uploaded_files: list = None):
|
625 |
-
logger.
|
626 |
if not message or len(message.strip()) < 5:
|
627 |
yield "Please provide a valid message or upload files to analyze."
|
628 |
return
|
629 |
|
|
|
|
|
|
|
630 |
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
631 |
call_agent, call_agent_level, message)
|
632 |
conversation = self.initialize_conversation(
|
633 |
message, conversation, history)
|
634 |
history = []
|
635 |
-
last_outputs = [] # Initialize last_outputs to avoid UnboundLocalError
|
636 |
|
637 |
next_round = True
|
638 |
current_round = 0
|
@@ -640,17 +567,18 @@ Summarize the function calls' responses in one sentence with all necessary infor
|
|
640 |
last_status = {}
|
641 |
token_overflow = False
|
642 |
|
|
|
|
|
|
|
643 |
try:
|
644 |
while next_round and current_round < max_round:
|
645 |
current_round += 1
|
646 |
-
|
|
|
647 |
function_call_messages, picked_tools_prompt, special_tool_call, current_gradio_history = yield from self.run_function_call_stream(
|
648 |
-
last_outputs, return_message=True,
|
649 |
-
|
650 |
-
|
651 |
-
call_agent=call_agent,
|
652 |
-
call_agent_level=call_agent_level,
|
653 |
-
temperature=temperature)
|
654 |
history.extend(current_gradio_history)
|
655 |
|
656 |
if special_tool_call == 'Finish':
|
@@ -659,7 +587,7 @@ Summarize the function calls' responses in one sentence with all necessary infor
|
|
659 |
conversation.extend(function_call_messages)
|
660 |
return function_call_messages[0]['content']
|
661 |
|
662 |
-
|
663 |
last_msg = history[-1] if history else ChatMessage(role="assistant", content="Response needed.")
|
664 |
history.append(ChatMessage(role="assistant", content=last_msg.content))
|
665 |
yield history
|
@@ -676,22 +604,19 @@ Summarize the function calls' responses in one sentence with all necessary infor
|
|
676 |
yield history
|
677 |
else:
|
678 |
next_round = False
|
679 |
-
conversation.append({"role": "assistant", "content": ''.join(last_outputs)})
|
680 |
return ''.join(last_outputs).replace("</s>", "")
|
681 |
|
682 |
-
|
|
|
|
|
|
|
|
|
|
|
683 |
last_outputs_str, token_overflow = self.llm_infer(
|
684 |
-
messages=conversation,
|
685 |
-
|
686 |
-
tools=picked_tools_prompt,
|
687 |
-
skip_special_tokens=False,
|
688 |
-
max_new_tokens=max_new_tokens,
|
689 |
-
max_token=max_token,
|
690 |
-
seed=seed,
|
691 |
-
check_token_status=True)
|
692 |
|
693 |
if last_outputs_str is None:
|
694 |
-
logger.warning("Token limit exceeded")
|
695 |
if self.force_finish:
|
696 |
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
|
697 |
conversation, temperature, max_new_tokens, max_token)
|
@@ -705,7 +630,7 @@ Summarize the function calls' responses in one sentence with all necessary infor
|
|
705 |
|
706 |
last_thought = last_outputs_str.split("[TOOL_CALLS]")[0]
|
707 |
for msg in history:
|
708 |
-
if msg.metadata
|
709 |
msg.metadata['status'] = 'done'
|
710 |
|
711 |
if '[FinalAnswer]' in last_thought:
|
@@ -721,18 +646,15 @@ Summarize the function calls' responses in one sentence with all necessary infor
|
|
721 |
|
722 |
last_outputs.append(last_outputs_str)
|
723 |
|
724 |
-
if next_round:
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
yield history
|
734 |
-
else:
|
735 |
-
yield "Reasoning rounds exceeded limit."
|
736 |
|
737 |
except Exception as e:
|
738 |
logger.error("Exception in run_gradio_chat: %s", e, exc_info=True)
|
|
|
24 |
rag_model_name,
|
25 |
tool_files_dict=None,
|
26 |
enable_finish=True,
|
27 |
+
enable_rag=True,
|
28 |
enable_summary=False,
|
29 |
+
init_rag_num=2, # Reduced for faster initial tool selection
|
30 |
+
step_rag_num=4, # Reduced for fewer RAG calls
|
31 |
summary_mode='step',
|
32 |
summary_skip_last_k=0,
|
33 |
summary_context_length=None,
|
34 |
force_finish=True,
|
35 |
avoid_repeat=True,
|
36 |
seed=None,
|
37 |
+
enable_checker=False, # Disabled by default for speed
|
38 |
enable_chat=False,
|
39 |
additional_default_tools=None):
|
40 |
self.model_name = model_name
|
|
|
45 |
self.model = None
|
46 |
self.rag_model = ToolRAGModel(rag_model_name)
|
47 |
self.tooluniverse = None
|
48 |
+
self.prompt_multi_step = "You are a medical assistant solving clinical oversight issues step-by-step using provided tools."
|
49 |
+
self.self_prompt = "Follow instructions precisely."
|
50 |
+
self.chat_prompt = "You are a helpful assistant for clinical queries."
|
51 |
self.enable_finish = enable_finish
|
52 |
self.enable_rag = enable_rag
|
53 |
self.enable_summary = enable_summary
|
|
|
61 |
self.seed = seed
|
62 |
self.enable_checker = enable_checker
|
63 |
self.additional_default_tools = additional_default_tools
|
64 |
+
logger.debug("TxAgent initialized with parameters: %s", self.__dict__)
|
65 |
|
66 |
def init_model(self):
|
67 |
self.load_models()
|
68 |
self.load_tooluniverse()
|
69 |
+
self.load_tool_desc_embedding()
|
70 |
+
|
71 |
+
def print_self_values(self):
|
72 |
+
for attr, value in self.__dict__.items():
|
73 |
+
logger.debug("%s: %s", attr, value)
|
74 |
|
75 |
def load_models(self, model_name=None):
|
76 |
+
if model_name is not None and model_name == self.model_name:
|
77 |
+
return f"The model {model_name} is already loaded."
|
78 |
+
if model_name:
|
79 |
self.model_name = model_name
|
80 |
|
81 |
+
self.model = LLM(model=self.model_name, dtype="float16") # Enable FP16
|
82 |
self.chat_template = Template(self.model.get_tokenizer().chat_template)
|
83 |
self.tokenizer = self.model.get_tokenizer()
|
84 |
logger.info("Model %s loaded successfully", self.model_name)
|
85 |
+
return f"Model {self.model_name} loaded successfully."
|
86 |
|
87 |
def load_tooluniverse(self):
|
88 |
self.tooluniverse = ToolUniverse(tool_files=self.tool_files_dict)
|
|
|
93 |
logger.debug("ToolUniverse loaded with %d special tools", len(self.special_tools_name))
|
94 |
|
95 |
def load_tool_desc_embedding(self):
|
96 |
+
self.rag_model.load_tool_desc_embedding(self.tooluniverse)
|
|
|
|
|
|
|
|
|
|
|
97 |
logger.debug("Tool description embeddings loaded")
|
98 |
|
99 |
def rag_infer(self, query, top_k=5):
|
|
|
107 |
call_agent_level += 1
|
108 |
if call_agent_level >= 2:
|
109 |
call_agent = False
|
110 |
+
|
111 |
+
if not call_agent and self.enable_rag:
|
112 |
+
picked_tools_prompt += self.tool_RAG(
|
113 |
+
message=message, rag_num=self.init_rag_num)
|
114 |
return picked_tools_prompt, call_agent_level
|
115 |
|
116 |
def initialize_conversation(self, message, conversation=None, history=None):
|
117 |
if conversation is None:
|
118 |
conversation = []
|
119 |
|
120 |
+
conversation = self.set_system_prompt(conversation, self.prompt_multi_step)
|
|
|
121 |
if history:
|
122 |
+
conversation.extend(
|
123 |
+
{"role": h['role'], "content": h['content']}
|
124 |
+
for h in history if h['role'] in ['user', 'assistant']
|
125 |
+
)
|
|
|
126 |
conversation.append({"role": "user", "content": message})
|
127 |
logger.debug("Conversation initialized with %d messages", len(conversation))
|
128 |
return conversation
|
129 |
|
130 |
+
def tool_RAG(self, message=None, picked_tool_names=None,
|
131 |
+
existing_tools_prompt=None, rag_num=4, return_call_result=False):
|
132 |
+
extra_factor = 10 # Reduced from 30 for efficiency
|
|
|
|
|
|
|
|
|
|
|
133 |
if picked_tool_names is None:
|
134 |
+
picked_tool_names = self.rag_infer(message, top_k=rag_num * extra_factor)
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
picked_tool_names = [
|
137 |
+
tool for tool in picked_tool_names
|
138 |
+
if tool not in self.special_tools_name
|
139 |
+
][:rag_num]
|
140 |
picked_tools = self.tooluniverse.get_tool_by_name(picked_tool_names)
|
141 |
picked_tools_prompt = self.tooluniverse.prepare_tool_prompts(picked_tools)
|
142 |
+
logger.debug("RAG selected %d tools: %s", len(picked_tool_names), picked_tool_names)
|
143 |
if return_call_result:
|
144 |
return picked_tools_prompt, picked_tool_names
|
145 |
return picked_tools_prompt
|
|
|
151 |
if call_agent:
|
152 |
tools.append(self.tooluniverse.get_one_tool_by_one_name('CallAgent', return_prompt=True))
|
153 |
logger.debug("CallAgent tool added")
|
154 |
+
elif self.enable_rag:
|
155 |
+
tools.append(self.tooluniverse.get_one_tool_by_one_name('Tool_RAG', return_prompt=True))
|
156 |
+
logger.debug("Tool_RAG tool added")
|
157 |
+
if self.additional_default_tools:
|
158 |
+
for tool_name in self.additional_default_tools:
|
159 |
+
tool_prompt = self.tooluniverse.get_one_tool_by_one_name(tool_name, return_prompt=True)
|
160 |
+
if tool_prompt:
|
161 |
+
tools.append(tool_prompt)
|
162 |
+
logger.debug("%s tool added", tool_name)
|
163 |
return tools
|
164 |
|
165 |
def add_finish_tools(self, tools):
|
|
|
174 |
conversation[0] = {"role": "system", "content": sys_prompt}
|
175 |
return conversation
|
176 |
|
177 |
+
def run_function_call(self, fcall_str, return_message=False,
|
178 |
+
existing_tools_prompt=None, message_for_call_agent=None,
|
179 |
+
call_agent=False, call_agent_level=None, temperature=None):
|
180 |
+
function_call_json, message = self.tooluniverse.extract_function_call_json(
|
181 |
+
fcall_str, return_message=return_message, verbose=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
call_results = []
|
183 |
special_tool_call = ''
|
184 |
if function_call_json:
|
185 |
+
for func in function_call_json if isinstance(function_call_json, list) else [function_call_json]:
|
186 |
+
logger.debug("Tool Call: %s", func)
|
187 |
+
if func["name"] == 'Finish':
|
188 |
+
special_tool_call = 'Finish'
|
189 |
+
break
|
190 |
+
elif func["name"] == 'Tool_RAG':
|
191 |
+
new_tools_prompt, call_result = self.tool_RAG(
|
192 |
+
message=message, existing_tools_prompt=existing_tools_prompt,
|
193 |
+
rag_num=self.step_rag_num, return_call_result=True)
|
194 |
+
existing_tools_prompt += new_tools_prompt
|
195 |
+
elif func["name"] == 'CallAgent' and call_agent and call_agent_level < 2:
|
196 |
+
solution_plan = func['arguments']['solution']
|
197 |
+
full_message = (
|
198 |
+
message_for_call_agent + "\nFollow this plan: " + str(solution_plan)
|
199 |
+
)
|
200 |
+
call_result = self.run_multistep_agent(
|
201 |
+
full_message, temperature=temperature, max_new_tokens=512,
|
202 |
+
max_token=2048, call_agent=False, call_agent_level=call_agent_level)
|
203 |
+
call_result = call_result.split('[FinalAnswer]')[-1].strip() if call_result else "⚠️ No content from sub-agent."
|
204 |
+
else:
|
205 |
+
call_result = self.tooluniverse.run_one_function(func)
|
206 |
+
|
207 |
+
call_id = self.tooluniverse.call_id_gen()
|
208 |
+
func["call_id"] = call_id
|
209 |
+
logger.debug("Tool Call Result: %s", call_result)
|
210 |
+
call_results.append({
|
211 |
+
"role": "tool",
|
212 |
+
"content": json.dumps({"tool_name": func["name"], "content": call_result, "call_id": call_id})
|
213 |
+
})
|
|
|
|
|
|
|
|
|
214 |
else:
|
215 |
call_results.append({
|
216 |
"role": "tool",
|
217 |
+
"content": json.dumps({"content": "Invalid function call format."})
|
218 |
})
|
219 |
|
220 |
revised_messages = [{
|
221 |
"role": "assistant",
|
222 |
+
"content": message.strip() if message else "",
|
223 |
"tool_calls": json.dumps(function_call_json)
|
224 |
}] + call_results
|
225 |
return revised_messages, existing_tools_prompt, special_tool_call
|
226 |
|
227 |
+
def run_function_call_stream(self, fcall_str, return_message=False,
|
228 |
+
existing_tools_prompt=None, message_for_call_agent=None,
|
229 |
+
call_agent=False, call_agent_level=None, temperature=None,
|
230 |
+
return_gradio_history=True):
|
231 |
+
function_call_json, message = self.tooluniverse.extract_function_call_json(
|
232 |
+
fcall_str, return_message=return_message, verbose=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
call_results = []
|
234 |
special_tool_call = ''
|
235 |
+
gradio_history = [] if return_gradio_history else None
|
|
|
236 |
if function_call_json:
|
237 |
+
for func in function_call_json if isinstance(function_call_json, list) else [function_call_json]:
|
238 |
+
if func["name"] == 'Finish':
|
239 |
+
special_tool_call = 'Finish'
|
240 |
+
break
|
241 |
+
elif func["name"] == 'Tool_RAG':
|
242 |
+
new_tools_prompt, call_result = self.tool_RAG(
|
243 |
+
message=message, existing_tools_prompt=existing_tools_prompt,
|
244 |
+
rag_num=self.step_rag_num, return_call_result=True)
|
245 |
+
existing_tools_prompt += new_tools_prompt
|
246 |
+
elif func["name"] == 'DirectResponse':
|
247 |
+
call_result = func['arguments']['response']
|
248 |
+
special_tool_call = 'DirectResponse'
|
249 |
+
elif func["name"] == 'RequireClarification':
|
250 |
+
call_result = func['arguments']['unclear_question']
|
251 |
+
special_tool_call = 'RequireClarification'
|
252 |
+
elif func["name"] == 'CallAgent' and call_agent and call_agent_level < 2:
|
253 |
+
solution_plan = func['arguments']['solution']
|
254 |
+
full_message = (
|
255 |
+
message_for_call_agent + "\nFollow this plan: " + str(solution_plan)
|
256 |
+
)
|
257 |
+
sub_agent_task = "Sub TxAgent plan: " + str(solution_plan)
|
258 |
+
call_result = yield from self.run_gradio_chat(
|
259 |
+
full_message, history=[], temperature=temperature,
|
260 |
+
max_new_tokens=512, max_token=2048, call_agent=False,
|
261 |
+
call_agent_level=call_agent_level, conversation=None,
|
262 |
+
sub_agent_task=sub_agent_task)
|
263 |
+
call_result = call_result.split('[FinalAnswer]')[-1] if call_result else "⚠️ No content from sub-agent."
|
264 |
+
else:
|
265 |
+
call_result = self.tooluniverse.run_one_function(func)
|
266 |
+
|
267 |
+
call_id = self.tooluniverse.call_id_gen()
|
268 |
+
func["call_id"] = call_id
|
269 |
+
call_results.append({
|
270 |
+
"role": "tool",
|
271 |
+
"content": json.dumps({"tool_name": func["name"], "content": call_result, "call_id": call_id})
|
272 |
+
})
|
273 |
+
if return_gradio_history and func["name"] != 'Finish':
|
274 |
+
title = f"{'🧰' if func['name'] == 'Tool_RAG' else '⚒️'} {func['name']}"
|
275 |
+
gradio_history.append(ChatMessage(
|
276 |
+
role="assistant", content=str(call_result),
|
277 |
+
metadata={"title": title, "log": str(func['arguments'])}
|
278 |
+
))
|
279 |
else:
|
280 |
call_results.append({
|
281 |
"role": "tool",
|
282 |
+
"content": json.dumps({"content": "Invalid function call format."})
|
283 |
})
|
284 |
|
285 |
revised_messages = [{
|
286 |
"role": "assistant",
|
287 |
+
"content": message.strip() if message else "",
|
288 |
"tool_calls": json.dumps(function_call_json)
|
289 |
}] + call_results
|
290 |
+
return revised_messages, existing_tools_prompt, special_tool_call, gradio_history
|
|
|
|
|
291 |
|
292 |
+
def get_answer_based_on_unfinished_reasoning(self, conversation, temperature, max_new_tokens, max_token):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
if conversation[-1]['role'] == 'assistant':
|
294 |
conversation.append(
|
295 |
+
{'role': 'tool', 'content': 'Errors occurred; provide final answer with current info.'})
|
296 |
finish_tools_prompt = self.add_finish_tools([])
|
297 |
+
output = self.llm_infer(
|
298 |
+
messages=conversation, temperature=temperature, tools=finish_tools_prompt,
|
299 |
+
output_begin_string='[FinalAnswer]', max_new_tokens=max_new_tokens, max_token=max_token)
|
300 |
+
logger.debug("Unfinished reasoning output: %s", output)
|
301 |
+
return output
|
302 |
+
|
303 |
+
def run_multistep_agent(self, message: str, temperature: float, max_new_tokens: int,
|
304 |
+
max_token: int, max_round: int = 10, call_agent=False, call_agent_level=0):
|
305 |
+
logger.debug("Starting multistep agent for message: %s", message[:100])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
307 |
call_agent, call_agent_level, message)
|
308 |
conversation = self.initialize_conversation(message)
|
|
|
314 |
enable_summary = False
|
315 |
last_status = {}
|
316 |
|
317 |
+
if self.enable_checker:
|
318 |
+
checker = ReasoningTraceChecker(message, conversation)
|
319 |
+
|
320 |
while next_round and current_round < max_round:
|
321 |
current_round += 1
|
322 |
+
if last_outputs:
|
323 |
function_call_messages, picked_tools_prompt, special_tool_call = self.run_function_call(
|
324 |
+
last_outputs, return_message=True, existing_tools_prompt=picked_tools_prompt,
|
325 |
+
message_for_call_agent=message, call_agent=call_agent,
|
326 |
+
call_agent_level=call_agent_level, temperature=temperature)
|
|
|
|
|
|
|
327 |
|
328 |
if special_tool_call == 'Finish':
|
329 |
next_round = False
|
330 |
conversation.extend(function_call_messages)
|
331 |
content = function_call_messages[0]['content']
|
332 |
+
return content.split('[FinalAnswer]')[-1] if content else "❌ No content after Finish."
|
|
|
|
|
333 |
|
334 |
if (self.enable_summary or token_overflow) and not call_agent:
|
335 |
enable_summary = True
|
|
|
341 |
outputs.append(tool_result_format(function_call_messages))
|
342 |
else:
|
343 |
next_round = False
|
|
|
344 |
return ''.join(last_outputs).replace("</s>", "")
|
345 |
|
346 |
+
if self.enable_checker:
|
347 |
+
good_status, wrong_info = checker.check_conversation()
|
348 |
+
if not good_status:
|
349 |
+
logger.warning("Checker error: %s", wrong_info)
|
350 |
+
break
|
351 |
+
|
352 |
last_outputs = []
|
|
|
353 |
last_outputs_str, token_overflow = self.llm_infer(
|
354 |
+
messages=conversation, temperature=temperature, tools=picked_tools_prompt,
|
355 |
+
max_new_tokens=max_new_tokens, max_token=max_token, check_token_status=True)
|
|
|
|
|
|
|
|
|
|
|
356 |
if last_outputs_str is None:
|
|
|
357 |
if self.force_finish:
|
358 |
return self.get_answer_based_on_unfinished_reasoning(
|
359 |
conversation, temperature, max_new_tokens, max_token)
|
360 |
return "❌ Token limit exceeded."
|
361 |
last_outputs.append(last_outputs_str)
|
362 |
|
363 |
+
if current_round >= max_round:
|
364 |
logger.warning("Max rounds exceeded")
|
365 |
if self.force_finish:
|
366 |
return self.get_answer_based_on_unfinished_reasoning(
|
|
|
370 |
def build_logits_processor(self, messages, llm):
|
371 |
tokenizer = llm.get_tokenizer()
|
372 |
if self.avoid_repeat and len(messages) > 2:
|
373 |
+
assistant_messages = [
|
374 |
+
m['content'] for m in messages[-3:] if m['role'] == 'assistant'
|
375 |
+
][:2]
|
376 |
forbidden_ids = [tokenizer.encode(msg, add_special_tokens=False) for msg in assistant_messages]
|
377 |
return [NoRepeatSentenceProcessor(forbidden_ids, 5)]
|
378 |
return None
|
379 |
|
380 |
+
def llm_infer(self, messages, temperature=0.1, tools=None, output_begin_string=None,
|
381 |
+
max_new_tokens=512, max_token=2048, skip_special_tokens=True,
|
382 |
+
model=None, tokenizer=None, terminators=None, seed=None, check_token_status=False):
|
|
|
|
|
383 |
if model is None:
|
384 |
model = self.model
|
385 |
|
|
|
388 |
temperature=temperature,
|
389 |
max_tokens=max_new_tokens,
|
390 |
seed=seed if seed is not None else self.seed,
|
391 |
+
logits_processors=logits_processor
|
392 |
)
|
393 |
|
394 |
+
prompt = self.chat_template.render(messages=messages, tools=tools, add_generation_prompt=True)
|
395 |
+
if output_begin_string:
|
|
|
396 |
prompt += output_begin_string
|
397 |
|
398 |
+
if check_token_status and max_token:
|
|
|
399 |
num_input_tokens = len(self.tokenizer.encode(prompt, return_tensors="pt")[0])
|
400 |
if num_input_tokens > max_token:
|
401 |
torch.cuda.empty_cache()
|
402 |
gc.collect()
|
403 |
logger.info("Token overflow: %d > %d", num_input_tokens, max_token)
|
404 |
return None, True
|
405 |
+
logger.debug("Input tokens: %d", num_input_tokens)
|
406 |
|
407 |
output = model.generate(prompt, sampling_params=sampling_params)
|
408 |
output = output[0].outputs[0].text
|
409 |
logger.debug("Inference output: %s", output[:100])
|
410 |
+
torch.cuda.empty_cache() # Clear CUDA cache
|
411 |
+
if check_token_status:
|
412 |
+
return output, False
|
|
|
413 |
return output
|
414 |
|
415 |
+
def run_self_agent(self, message: str, temperature: float, max_new_tokens: int, max_token: int):
|
416 |
+
logger.debug("Starting self agent")
|
|
|
|
|
|
|
417 |
conversation = self.set_system_prompt([], self.self_prompt)
|
418 |
conversation.append({"role": "user", "content": message})
|
419 |
+
return self.llm_infer(messages=conversation, temperature=temperature,
|
420 |
+
max_new_tokens=max_new_tokens, max_token=max_token)
|
421 |
+
|
422 |
+
def run_chat_agent(self, message: str, temperature: float, max_new_tokens: int, max_token: int):
|
423 |
+
logger.debug("Starting chat agent")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
conversation = self.set_system_prompt([], self.chat_prompt)
|
425 |
conversation.append({"role": "user", "content": message})
|
426 |
+
return self.llm_infer(messages=conversation, temperature=temperature,
|
427 |
+
max_new_tokens=max_new_tokens, max_token=max_token)
|
428 |
+
|
429 |
+
def run_format_agent(self, message: str, answer: str, temperature: float, max_new_tokens: int, max_token: int):
|
430 |
+
logger.debug("Starting format agent")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
431 |
if '[FinalAnswer]' in answer:
|
432 |
possible_final_answer = answer.split("[FinalAnswer]")[-1]
|
433 |
elif "\n\n" in answer:
|
434 |
possible_final_answer = answer.split("\n\n")[-1]
|
435 |
else:
|
436 |
possible_final_answer = answer.strip()
|
437 |
+
|
438 |
+
if len(possible_final_answer) >= 1 and possible_final_answer[0] in ['A', 'B', 'C', 'D', 'E']:
|
439 |
+
return possible_final_answer[0]
|
440 |
elif len(possible_final_answer) > 1 and possible_final_answer[1] == ':' and possible_final_answer[0] in ['A', 'B', 'C', 'D', 'E']:
|
441 |
return possible_final_answer[0]
|
442 |
|
443 |
conversation = self.set_system_prompt(
|
444 |
+
[], "Transform the answer to a single letter: 'A', 'B', 'C', 'D', or 'E'.")
|
445 |
+
conversation.append({"role": "user", "content": f"Original: {message}\nAnswer: {answer}\nFinal answer (letter):"})
|
446 |
+
return self.llm_infer(messages=conversation, temperature=temperature,
|
447 |
+
max_new_tokens=max_new_tokens, max_token=max_token)
|
448 |
+
|
449 |
+
def run_summary_agent(self, thought_calls: str, function_response: str,
|
450 |
+
temperature: float, max_new_tokens: int, max_token: int):
|
451 |
+
logger.debug("Starting summary agent")
|
452 |
+
prompt = f"""Thought and function calls: {thought_calls}
|
453 |
+
Function responses: {function_response}
|
454 |
+
Summarize the function responses in one sentence with all necessary information."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
455 |
conversation = [{"role": "user", "content": prompt}]
|
456 |
+
output = self.llm_infer(messages=conversation, temperature=temperature,
|
457 |
+
max_new_tokens=max_new_tokens, max_token=max_token)
|
|
|
|
|
|
|
|
|
458 |
if '[' in output:
|
459 |
output = output.split('[')[0]
|
460 |
return output
|
|
|
462 |
def function_result_summary(self, input_list, status, enable_summary):
|
463 |
if 'tool_call_step' not in status:
|
464 |
status['tool_call_step'] = 0
|
465 |
+
if 'step' not in status:
|
466 |
+
status['step'] = 0
|
467 |
+
status['step'] += 1
|
468 |
+
|
469 |
for idx in range(len(input_list)):
|
470 |
pos_id = len(input_list) - idx - 1
|
471 |
if input_list[pos_id]['role'] == 'assistant' and 'tool_calls' in input_list[pos_id]:
|
472 |
+
if 'Tool_RAG' in str(input_list[pos_id]['tool_calls']):
|
473 |
+
status['tool_call_step'] += 1
|
474 |
break
|
475 |
|
|
|
476 |
if not enable_summary:
|
477 |
return status
|
478 |
|
479 |
+
if 'summarized_index' not in status:
|
480 |
+
status['summarized_index'] = 0
|
481 |
+
if 'summarized_step' not in status:
|
482 |
+
status['summarized_step'] = 0
|
483 |
+
if 'previous_length' not in status:
|
484 |
+
status['previous_length'] = 0
|
485 |
+
if 'history' not in status:
|
486 |
+
status['history'] = []
|
487 |
+
|
488 |
+
status['history'].append(
|
489 |
+
self.summary_mode == 'step' and status['summarized_step'] < status['step'] - status['tool_call_step'] - self.summary_skip_last_k)
|
490 |
|
|
|
491 |
idx = status['summarized_index']
|
492 |
+
function_response = ''
|
493 |
this_thought_calls = None
|
|
|
494 |
while idx < len(input_list):
|
495 |
if (self.summary_mode == 'step' and status['summarized_step'] < status['step'] - status['tool_call_step'] - self.summary_skip_last_k) or \
|
496 |
(self.summary_mode == 'length' and status['previous_length'] > self.summary_context_length):
|
497 |
if input_list[idx]['role'] == 'assistant':
|
498 |
+
if 'Tool_RAG' in str(input_list[idx]['tool_calls']):
|
499 |
+
this_thought_calls = None
|
500 |
+
else:
|
501 |
+
if function_response:
|
502 |
+
status['summarized_step'] += 1
|
503 |
+
result_summary = self.run_summary_agent(
|
504 |
+
thought_calls=this_thought_calls, function_response=function_response,
|
505 |
+
temperature=0.1, max_new_tokens=512, max_token=2048)
|
506 |
+
input_list.insert(
|
507 |
+
last_call_idx + 1, {'role': 'tool', 'content': result_summary})
|
508 |
+
status['summarized_index'] = last_call_idx + 2
|
509 |
+
idx += 1
|
510 |
+
last_call_idx = idx
|
511 |
+
this_thought_calls = input_list[idx]['content'] + input_list[idx]['tool_calls']
|
512 |
+
function_response = ''
|
513 |
+
elif input_list[idx]['role'] == 'tool' and this_thought_calls:
|
514 |
function_response += input_list[idx]['content']
|
515 |
del input_list[idx]
|
516 |
idx -= 1
|
|
|
521 |
if function_response:
|
522 |
status['summarized_step'] += 1
|
523 |
result_summary = self.run_summary_agent(
|
524 |
+
thought_calls=this_thought_calls, function_response=function_response,
|
525 |
+
temperature=0.1, max_new_tokens=512, max_token=2048)
|
|
|
|
|
|
|
526 |
tool_calls = json.loads(input_list[last_call_idx]['tool_calls'])
|
527 |
for tool_call in tool_calls:
|
528 |
del tool_call['call_id']
|
529 |
input_list[last_call_idx]['tool_calls'] = json.dumps(tool_calls)
|
530 |
+
input_list.insert(
|
531 |
+
last_call_idx + 1, {'role': 'tool', 'content': result_summary})
|
532 |
status['summarized_index'] = last_call_idx + 2
|
533 |
|
534 |
return status
|
|
|
539 |
if hasattr(self, key):
|
540 |
setattr(self, key, value)
|
541 |
updated_attributes[key] = value
|
542 |
+
logger.debug("Updated parameters: %s", updated_attributes)
|
543 |
return updated_attributes
|
544 |
|
545 |
+
def run_gradio_chat(self, message: str, history: list, temperature: float,
|
546 |
+
max_new_tokens: int, max_token: int, call_agent: bool,
|
547 |
+
conversation: gr.State, max_round: int = 10, seed: int = None,
|
548 |
+
call_agent_level: int = 0, sub_agent_task: str = None,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
549 |
uploaded_files: list = None):
|
550 |
+
logger.debug("Chat started, message: %s", message[:100])
|
551 |
if not message or len(message.strip()) < 5:
|
552 |
yield "Please provide a valid message or upload files to analyze."
|
553 |
return
|
554 |
|
555 |
+
if message.startswith("[\U0001f9f0 Tool_RAG") or message.startswith("⚒️"):
|
556 |
+
return
|
557 |
+
|
558 |
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
559 |
call_agent, call_agent_level, message)
|
560 |
conversation = self.initialize_conversation(
|
561 |
message, conversation, history)
|
562 |
history = []
|
|
|
563 |
|
564 |
next_round = True
|
565 |
current_round = 0
|
|
|
567 |
last_status = {}
|
568 |
token_overflow = False
|
569 |
|
570 |
+
if self.enable_checker:
|
571 |
+
checker = ReasoningTraceChecker(message, conversation, init_index=len(conversation))
|
572 |
+
|
573 |
try:
|
574 |
while next_round and current_round < max_round:
|
575 |
current_round += 1
|
576 |
+
last_outputs = []
|
577 |
+
if last_outputs:
|
578 |
function_call_messages, picked_tools_prompt, special_tool_call, current_gradio_history = yield from self.run_function_call_stream(
|
579 |
+
last_outputs, return_message=True, existing_tools_prompt=picked_tools_prompt,
|
580 |
+
message_for_call_agent=message, call_agent=call_agent,
|
581 |
+
call_agent_level=call_agent_level, temperature=temperature)
|
|
|
|
|
|
|
582 |
history.extend(current_gradio_history)
|
583 |
|
584 |
if special_tool_call == 'Finish':
|
|
|
587 |
conversation.extend(function_call_messages)
|
588 |
return function_call_messages[0]['content']
|
589 |
|
590 |
+
if special_tool_call in ['RequireClarification', 'DirectResponse']:
|
591 |
last_msg = history[-1] if history else ChatMessage(role="assistant", content="Response needed.")
|
592 |
history.append(ChatMessage(role="assistant", content=last_msg.content))
|
593 |
yield history
|
|
|
604 |
yield history
|
605 |
else:
|
606 |
next_round = False
|
|
|
607 |
return ''.join(last_outputs).replace("</s>", "")
|
608 |
|
609 |
+
if self.enable_checker:
|
610 |
+
good_status, wrong_info = checker.check_conversation()
|
611 |
+
if not good_status:
|
612 |
+
logger.warning("Checker error: %s", wrong_info)
|
613 |
+
break
|
614 |
+
|
615 |
last_outputs_str, token_overflow = self.llm_infer(
|
616 |
+
messages=conversation, temperature=temperature, tools=picked_tools_prompt,
|
617 |
+
max_new_tokens=max_new_tokens, max_token=max_token, seed=seed, check_token_status=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
618 |
|
619 |
if last_outputs_str is None:
|
|
|
620 |
if self.force_finish:
|
621 |
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
|
622 |
conversation, temperature, max_new_tokens, max_token)
|
|
|
630 |
|
631 |
last_thought = last_outputs_str.split("[TOOL_CALLS]")[0]
|
632 |
for msg in history:
|
633 |
+
if msg.metadata:
|
634 |
msg.metadata['status'] = 'done'
|
635 |
|
636 |
if '[FinalAnswer]' in last_thought:
|
|
|
646 |
|
647 |
last_outputs.append(last_outputs_str)
|
648 |
|
649 |
+
if next_round and self.force_finish:
|
650 |
+
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
|
651 |
+
conversation, temperature, max_new_tokens, max_token)
|
652 |
+
parts = last_outputs_str.split('[FinalAnswer]', 1)
|
653 |
+
final_thought, final_answer = parts if len(parts) == 2 else (last_outputs_str, "")
|
654 |
+
history.append(ChatMessage(role="assistant", content=final_thought.strip()))
|
655 |
+
yield history
|
656 |
+
history.append(ChatMessage(role="assistant", content="**🧠 Final Analysis:**\n" + final_answer.strip()))
|
657 |
+
yield history
|
|
|
|
|
|
|
658 |
|
659 |
except Exception as e:
|
660 |
logger.error("Exception in run_gradio_chat: %s", e, exc_info=True)
|