Update src/txagent/txagent.py
Browse files- src/txagent/txagent.py +685 -500
src/txagent/txagent.py
CHANGED
@@ -11,25 +11,19 @@ import types
|
|
11 |
from tooluniverse import ToolUniverse
|
12 |
from gradio import ChatMessage
|
13 |
from .toolrag import ToolRAGModel
|
14 |
-
import torch
|
15 |
-
import logging
|
16 |
-
from difflib import SequenceMatcher
|
17 |
-
import threading
|
18 |
-
|
19 |
-
logger = logging.getLogger(__name__)
|
20 |
-
logging.basicConfig(level=logging.INFO)
|
21 |
|
22 |
from .utils import NoRepeatSentenceProcessor, ReasoningTraceChecker, tool_result_format
|
23 |
|
|
|
24 |
class TxAgent:
|
25 |
def __init__(self, model_name,
|
26 |
rag_model_name,
|
27 |
-
tool_files_dict=None,
|
28 |
enable_finish=True,
|
29 |
enable_rag=True,
|
30 |
enable_summary=False,
|
31 |
-
init_rag_num=
|
32 |
-
step_rag_num=
|
33 |
summary_mode='step',
|
34 |
summary_skip_last_k=0,
|
35 |
summary_context_length=None,
|
@@ -38,7 +32,8 @@ class TxAgent:
|
|
38 |
seed=None,
|
39 |
enable_checker=False,
|
40 |
enable_chat=False,
|
41 |
-
additional_default_tools=None
|
|
|
42 |
self.model_name = model_name
|
43 |
self.tokenizer = None
|
44 |
self.terminators = None
|
@@ -47,9 +42,10 @@ class TxAgent:
|
|
47 |
self.model = None
|
48 |
self.rag_model = ToolRAGModel(rag_model_name)
|
49 |
self.tooluniverse = None
|
50 |
-
self.
|
51 |
-
self.
|
52 |
-
self.
|
|
|
53 |
self.enable_finish = enable_finish
|
54 |
self.enable_rag = enable_rag
|
55 |
self.enable_summary = enable_summary
|
@@ -63,7 +59,7 @@ class TxAgent:
|
|
63 |
self.seed = seed
|
64 |
self.enable_checker = enable_checker
|
65 |
self.additional_default_tools = additional_default_tools
|
66 |
-
|
67 |
|
68 |
def init_model(self):
|
69 |
self.load_models()
|
@@ -72,29 +68,19 @@ class TxAgent:
|
|
72 |
|
73 |
def print_self_values(self):
|
74 |
for attr, value in self.__dict__.items():
|
75 |
-
|
76 |
|
77 |
def load_models(self, model_name=None):
|
78 |
-
if model_name is not None
|
79 |
-
|
80 |
-
|
81 |
self.model_name = model_name
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
max_model_len=131072,
|
89 |
-
enforce_eager=True # Avoid graph compilation issues
|
90 |
-
)
|
91 |
-
self.chat_template = Template(self.model.get_tokenizer().chat_template)
|
92 |
-
self.tokenizer = self.model.get_tokenizer()
|
93 |
-
logger.info("Model %s loaded successfully", self.model_name)
|
94 |
-
return f"Model {self.model_name} loaded successfully."
|
95 |
-
except Exception as e:
|
96 |
-
logger.error(f"Model loading error: {e}")
|
97 |
-
raise
|
98 |
|
99 |
def load_tooluniverse(self):
|
100 |
self.tooluniverse = ToolUniverse(tool_files=self.tool_files_dict)
|
@@ -102,225 +88,316 @@ class TxAgent:
|
|
102 |
special_tools = self.tooluniverse.prepare_tool_prompts(
|
103 |
self.tooluniverse.tool_category_dicts["special_tools"])
|
104 |
self.special_tools_name = [tool['name'] for tool in special_tools]
|
105 |
-
logger.debug("ToolUniverse loaded with %d special tools", len(self.special_tools_name))
|
106 |
|
107 |
def load_tool_desc_embedding(self):
|
108 |
self.rag_model.load_tool_desc_embedding(self.tooluniverse)
|
109 |
-
logger.debug("Tool description embeddings loaded")
|
110 |
|
111 |
def rag_infer(self, query, top_k=5):
|
112 |
return self.rag_model.rag_infer(query, top_k)
|
113 |
|
114 |
def initialize_tools_prompt(self, call_agent, call_agent_level, message):
|
115 |
picked_tools_prompt = []
|
116 |
-
|
117 |
-
picked_tools_prompt
|
118 |
-
|
119 |
-
|
120 |
-
if
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
return picked_tools_prompt, call_agent_level
|
127 |
|
128 |
def initialize_conversation(self, message, conversation=None, history=None):
|
129 |
if conversation is None:
|
130 |
conversation = []
|
131 |
|
132 |
-
conversation = self.set_system_prompt(
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
conversation.append({"role": "user", "content": message})
|
139 |
-
|
140 |
return conversation
|
141 |
|
142 |
-
def tool_RAG(self, message=None,
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
145 |
if picked_tool_names is None:
|
146 |
-
picked_tool_names
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
-
picked_tool_names = [
|
149 |
-
tool for tool in picked_tool_names
|
150 |
-
if tool not in self.special_tools_name
|
151 |
-
][:rag_num]
|
152 |
picked_tools = self.tooluniverse.get_tool_by_name(picked_tool_names)
|
153 |
-
picked_tools_prompt = self.tooluniverse.prepare_tool_prompts(
|
154 |
-
|
155 |
if return_call_result:
|
156 |
return picked_tools_prompt, picked_tool_names
|
157 |
return picked_tools_prompt
|
158 |
|
159 |
def add_special_tools(self, tools, call_agent=False):
|
160 |
if self.enable_finish:
|
161 |
-
tools.append(self.tooluniverse.get_one_tool_by_one_name(
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
return tools
|
176 |
|
177 |
def add_finish_tools(self, tools):
|
178 |
-
tools.append(self.tooluniverse.get_one_tool_by_one_name(
|
179 |
-
|
|
|
180 |
return tools
|
181 |
|
182 |
def set_system_prompt(self, conversation, sys_prompt):
|
183 |
-
if
|
184 |
-
conversation.append(
|
|
|
185 |
else:
|
186 |
conversation[0] = {"role": "system", "content": sys_prompt}
|
187 |
return conversation
|
188 |
|
189 |
-
def run_function_call(self, fcall_str,
|
190 |
-
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
192 |
function_call_json, message = self.tooluniverse.extract_function_call_json(
|
193 |
fcall_str, return_message=return_message, verbose=False)
|
194 |
call_results = []
|
195 |
special_tool_call = ''
|
196 |
-
if function_call_json:
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
else:
|
227 |
call_results.append({
|
228 |
"role": "tool",
|
229 |
-
"content": json.dumps({"content": "
|
230 |
})
|
231 |
|
232 |
revised_messages = [{
|
233 |
"role": "assistant",
|
234 |
-
"content": message.strip()
|
235 |
"tool_calls": json.dumps(function_call_json)
|
236 |
}] + call_results
|
|
|
|
|
237 |
return revised_messages, existing_tools_prompt, special_tool_call
|
238 |
|
239 |
-
def run_function_call_stream(self, fcall_str,
|
240 |
-
|
241 |
-
|
242 |
-
|
|
|
|
|
|
|
|
|
|
|
243 |
function_call_json, message = self.tooluniverse.extract_function_call_json(
|
244 |
fcall_str, return_message=return_message, verbose=False)
|
245 |
call_results = []
|
246 |
special_tool_call = ''
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
else:
|
292 |
call_results.append({
|
293 |
"role": "tool",
|
294 |
-
"content": json.dumps({"content": "
|
295 |
})
|
296 |
|
297 |
revised_messages = [{
|
298 |
"role": "assistant",
|
299 |
-
"content": message.strip()
|
300 |
"tool_calls": json.dumps(function_call_json)
|
301 |
}] + call_results
|
302 |
-
return revised_messages, existing_tools_prompt, special_tool_call, gradio_history
|
303 |
|
304 |
-
|
305 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
conversation.append(
|
307 |
-
{'role': 'tool', 'content': 'Errors
|
308 |
finish_tools_prompt = self.add_finish_tools([])
|
309 |
-
output = self.llm_infer(
|
310 |
-
messages=conversation, temperature=temperature, tools=finish_tools_prompt,
|
311 |
-
output_begin_string='[FinalAnswer]', max_new_tokens=max_new_tokens, max_token=max_token)
|
312 |
-
logger.debug("Unfinished reasoning output: %s", output)
|
313 |
-
return output
|
314 |
|
315 |
-
|
316 |
-
|
317 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
319 |
call_agent, call_agent_level, message)
|
320 |
conversation = self.initialize_conversation(message)
|
|
|
321 |
outputs = []
|
322 |
last_outputs = []
|
323 |
next_round = True
|
|
|
324 |
current_round = 0
|
325 |
token_overflow = False
|
326 |
enable_summary = False
|
@@ -328,425 +405,533 @@ class TxAgent:
|
|
328 |
|
329 |
if self.enable_checker:
|
330 |
checker = ReasoningTraceChecker(message, conversation)
|
331 |
-
|
332 |
-
clinical_keywords = ['medication', 'symptom', 'evaluation', 'diagnosis']
|
333 |
-
has_clinical_data = any(keyword in message.lower() for keyword in clinical_keywords)
|
334 |
-
|
335 |
-
while next_round and current_round < max_round:
|
336 |
-
current_round += 1
|
337 |
-
if last_outputs:
|
338 |
-
function_call_messages, picked_tools_prompt, special_tool_call = self.run_function_call(
|
339 |
-
last_outputs, return_message=True, existing_tools_prompt=picked_tools_prompt,
|
340 |
-
message_for_call_agent=message, call_agent=call_agent,
|
341 |
-
call_agent_level=call_agent_level, temperature=temperature)
|
342 |
-
|
343 |
-
if special_tool_call == 'Finish':
|
344 |
-
next_round = False
|
345 |
-
conversation.extend(function_call_messages)
|
346 |
-
content = function_call_messages[0]['content']
|
347 |
-
return content.split('[FinalAnswer]')[-1] if content else "❌ No content after Finish."
|
348 |
-
|
349 |
-
if (self.enable_summary or token_overflow) and not call_agent:
|
350 |
-
enable_summary = True
|
351 |
-
last_status = self.function_result_summary(
|
352 |
-
conversation, status=last_status, enable_summary=enable_summary)
|
353 |
-
|
354 |
-
if function_call_messages:
|
355 |
-
conversation.extend(function_call_messages)
|
356 |
-
outputs.append(tool_result_format(function_call_messages))
|
357 |
-
else:
|
358 |
-
next_round = False
|
359 |
-
return ''.join(last_outputs).replace("</s>", "")
|
360 |
-
|
361 |
-
if self.enable_checker:
|
362 |
-
good_status, wrong_info = checker.check_conversation()
|
363 |
-
if not good_status:
|
364 |
-
logger.warning("Checker error: %s", wrong_info)
|
365 |
-
break
|
366 |
-
|
367 |
-
tools = [] if has_clinical_data else picked_tools_prompt
|
368 |
-
last_outputs = []
|
369 |
-
last_outputs_str, token_overflow = self.llm_infer(
|
370 |
-
messages=conversation, temperature=temperature, tools=tools,
|
371 |
-
max_new_tokens=max_new_tokens, max_token=max_token, check_token_status=True)
|
372 |
-
if last_outputs_str is None:
|
373 |
-
if self.force_finish:
|
374 |
-
return self.get_answer_based_on_unfinished_reasoning(
|
375 |
-
conversation, temperature, max_new_tokens, max_token)
|
376 |
-
return "❌ Token limit exceeded."
|
377 |
-
last_outputs.append(last_outputs_str)
|
378 |
-
|
379 |
-
if current_round >= max_round:
|
380 |
-
logger.warning("Max rounds exceeded")
|
381 |
-
if self.force_finish:
|
382 |
-
return self.get_answer_based_on_unfinished_reasoning(
|
383 |
-
conversation, temperature, max_new_tokens, max_token)
|
384 |
-
return None
|
385 |
-
|
386 |
-
def build_logits_processor(self, messages, llm):
|
387 |
-
tokenizer = llm.get_tokenizer()
|
388 |
-
if self.avoid_repeat and len(messages) > 2:
|
389 |
-
assistant_messages = [
|
390 |
-
m['content'] for m in messages[-3:] if m['role'] == 'assistant'
|
391 |
-
][:2]
|
392 |
-
forbidden_ids = [tokenizer.encode(msg, add_special_tokens=False) for msg in assistant_messages]
|
393 |
-
unique_sentences = []
|
394 |
-
for msg in assistant_messages:
|
395 |
-
sentences = msg.split('. ')
|
396 |
-
for s in sentences:
|
397 |
-
if not s:
|
398 |
-
continue
|
399 |
-
is_unique = True
|
400 |
-
for seen_s in unique_sentences:
|
401 |
-
if SequenceMatcher(None, s.lower(), seen_s.lower()).ratio() > 0.9:
|
402 |
-
is_unique = False
|
403 |
-
break
|
404 |
-
if is_unique:
|
405 |
-
unique_sentences.append(s)
|
406 |
-
forbidden_ids = [tokenizer.encode(s, add_special_tokens=False) for s in unique_sentences]
|
407 |
-
return [NoRepeatSentenceProcessor(forbidden_ids, 15)] # Increased penalty
|
408 |
-
return None
|
409 |
-
|
410 |
-
def llm_infer(self, messages, temperature=0.1, tools=None, output_begin_string=None,
|
411 |
-
max_new_tokens=512, max_token=2048, skip_special_tokens=True,
|
412 |
-
model=None, tokenizer=None, terminators=None, seed=None, check_token_status=False):
|
413 |
-
if model is None:
|
414 |
-
model = self.model
|
415 |
-
|
416 |
-
logits_processor = self.build_logits_processor(messages, model)
|
417 |
-
sampling_params = SamplingParams(
|
418 |
-
temperature=temperature,
|
419 |
-
max_tokens=max_new_tokens,
|
420 |
-
seed=seed if seed is not None else self.seed,
|
421 |
-
logits_processors=logits_processor
|
422 |
-
)
|
423 |
-
|
424 |
-
prompt = self.chat_template.render(messages=messages, tools=tools, add_generation_prompt=True)
|
425 |
-
if output_begin_string:
|
426 |
-
prompt += output_begin_string
|
427 |
-
|
428 |
-
if len(prompt) > 100000: # Early text length check
|
429 |
-
logger.error(f"Prompt length ({len(prompt)}) exceeds limit (100000).")
|
430 |
-
return None, True
|
431 |
-
|
432 |
-
if check_token_status and max_token:
|
433 |
-
num_input_tokens = len(self.tokenizer.encode(prompt, add_special_tokens=False))
|
434 |
-
if num_input_tokens > max_token:
|
435 |
-
logger.warning(f"Input tokens ({num_input_tokens}) exceed max_token ({max_token}). Truncating.")
|
436 |
-
prompt_tokens = self.tokenizer.encode(prompt, add_special_tokens=False)[:max_token]
|
437 |
-
prompt = self.tokenizer.decode(prompt_tokens)
|
438 |
-
if num_input_tokens > 131072:
|
439 |
-
logger.error(f"Input tokens ({num_input_tokens}) exceed model limit (131072).")
|
440 |
-
return None, True
|
441 |
-
|
442 |
-
try:
|
443 |
-
torch.cuda.empty_cache()
|
444 |
-
output = model.generate(prompt, sampling_params=sampling_params)
|
445 |
-
output = output[0].outputs[0].text
|
446 |
-
logger.debug("Inference output: %s", output[:100])
|
447 |
-
except Exception as e:
|
448 |
-
logger.error(f"Inference error: {e}")
|
449 |
-
return None, True
|
450 |
-
|
451 |
-
torch.cuda.empty_cache()
|
452 |
-
gc.collect()
|
453 |
-
if check_token_status:
|
454 |
-
return output, False
|
455 |
-
return output
|
456 |
-
|
457 |
-
def run_quick_summary(self, message: str, temperature: float = 0.1, max_new_tokens: int = 256, max_token: int = 1024):
|
458 |
-
"""Generate a fast, concise summary of potential missed diagnoses without tool calls"""
|
459 |
-
logger.debug("Starting quick summary for message: %s", message[:100])
|
460 |
-
if len(message) > 50000:
|
461 |
-
logger.warning(f"Message length ({len(message)}) exceeds limit (50000). Truncating.")
|
462 |
-
message = message[:50000]
|
463 |
-
|
464 |
-
prompt = """
|
465 |
-
Analyze the patient record excerpt for missed diagnoses, focusing ONLY on clinical findings such as symptoms, medications, or evaluation results. Provide a concise summary in ONE paragraph without headings or bullet points. ALWAYS treat medications or psychiatric evaluations as potential missed diagnoses, specifying their implications (e.g., 'use of Seroquel may indicate untreated psychosis'). Recommend urgent review for identified findings. Do NOT use external tools or repeat non-clinical data (e.g., name, date of birth). If no clinical findings are present, state 'No missed diagnoses identified' in ONE sentence.
|
466 |
-
Patient Record Excerpt:
|
467 |
-
{chunk}
|
468 |
-
"""
|
469 |
-
conversation = self.set_system_prompt([], prompt.format(chunk=message))
|
470 |
-
conversation.append({"role": "user", "content": message})
|
471 |
-
output, token_overflow = self.llm_infer(
|
472 |
-
messages=conversation,
|
473 |
-
temperature=temperature,
|
474 |
-
max_new_tokens=max_new_tokens,
|
475 |
-
max_token=max_token,
|
476 |
-
tools=[] # No tools
|
477 |
-
)
|
478 |
-
if token_overflow:
|
479 |
-
logger.error("Token overflow in quick summary")
|
480 |
-
return "Error: Input too large for quick summary."
|
481 |
-
if output and '[FinalAnswer]' in output:
|
482 |
-
output = output.split('[FinalAnswer]')[-1].strip()
|
483 |
-
logger.debug("Quick summary output: %s", output[:100] if output else "None")
|
484 |
-
return output or "No missed diagnoses identified"
|
485 |
-
|
486 |
-
def run_background_report(self, message: str, history: list, temperature: float,
|
487 |
-
max_new_tokens: int, max_token: int, call_agent: bool,
|
488 |
-
conversation: gr.State, max_round: int, seed: int,
|
489 |
-
call_agent_level: int, report_path: str):
|
490 |
-
"""Run detailed report generation in the background and save to file"""
|
491 |
-
logger.debug("Starting background report for message: %s", message[:100])
|
492 |
-
if len(message) > 50000:
|
493 |
-
logger.warning(f"Message length ({len(message)}) exceeds limit (50000). Truncating.")
|
494 |
-
message = message[:50000]
|
495 |
-
|
496 |
-
combined_response = ""
|
497 |
-
history_copy = history.copy()
|
498 |
-
|
499 |
-
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
500 |
-
call_agent, call_agent_level, message)
|
501 |
-
conversation = self.initialize_conversation(message, conversation, history_copy)
|
502 |
-
|
503 |
-
next_round = True
|
504 |
-
current_round = 0
|
505 |
-
enable_summary = False
|
506 |
-
last_status = {}
|
507 |
-
token_overflow = False
|
508 |
-
|
509 |
-
if self.enable_checker:
|
510 |
-
checker = ReasoningTraceChecker(message, conversation, init_index=len(conversation))
|
511 |
-
|
512 |
try:
|
513 |
while next_round and current_round < max_round:
|
514 |
current_round += 1
|
515 |
-
|
516 |
-
if last_outputs:
|
517 |
function_call_messages, picked_tools_prompt, special_tool_call = self.run_function_call(
|
518 |
-
last_outputs, return_message=True,
|
519 |
-
|
520 |
-
|
521 |
-
|
|
|
|
|
|
|
522 |
if special_tool_call == 'Finish':
|
523 |
next_round = False
|
524 |
conversation.extend(function_call_messages)
|
525 |
-
|
526 |
-
|
|
|
|
|
527 |
|
528 |
if (self.enable_summary or token_overflow) and not call_agent:
|
|
|
|
|
529 |
enable_summary = True
|
530 |
last_status = self.function_result_summary(
|
531 |
conversation, status=last_status, enable_summary=enable_summary)
|
532 |
|
533 |
-
if function_call_messages:
|
534 |
conversation.extend(function_call_messages)
|
535 |
-
|
|
|
536 |
else:
|
537 |
next_round = False
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
if self.enable_checker:
|
542 |
good_status, wrong_info = checker.check_conversation()
|
543 |
if not good_status:
|
544 |
-
|
|
|
|
|
545 |
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
546 |
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
|
|
|
|
551 |
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
|
|
|
|
|
|
|
|
557 |
break
|
558 |
-
|
559 |
-
|
|
|
|
|
|
|
560 |
|
561 |
-
|
562 |
-
|
|
|
|
|
563 |
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
568 |
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
logger.info("Detailed report saved to %s", report_path)
|
574 |
-
except Exception as e:
|
575 |
-
logger.error(f"Failed to save report: {e}")
|
576 |
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
if
|
598 |
-
return
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
# Start background report generation
|
611 |
-
if report_path:
|
612 |
-
threading.Thread(
|
613 |
-
target=self.run_background_report,
|
614 |
-
args=(message, history, temperature, max_new_tokens, max_token, call_agent,
|
615 |
-
conversation, max_round, seed, call_agent_level, report_path),
|
616 |
-
daemon=True
|
617 |
-
).start()
|
618 |
-
history.append(ChatMessage(
|
619 |
-
role="assistant",
|
620 |
-
content="Generating detailed report in the background. Download will be available when ready."
|
621 |
-
))
|
622 |
-
yield history
|
623 |
-
|
624 |
-
def run_self_agent(self, message: str, temperature: float, max_new_tokens: int, max_token: int):
|
625 |
-
logger.debug("Starting self agent")
|
626 |
-
conversation = self.set_system_prompt([], self.self_prompt)
|
627 |
conversation.append({"role": "user", "content": message})
|
628 |
-
return self.llm_infer(messages=conversation,
|
|
|
|
|
629 |
max_new_tokens=max_new_tokens, max_token=max_token)
|
630 |
|
631 |
-
def run_chat_agent(self, message: str,
|
632 |
-
|
633 |
-
|
|
|
|
|
|
|
|
|
|
|
634 |
conversation.append({"role": "user", "content": message})
|
635 |
-
return self.llm_infer(messages=conversation,
|
|
|
|
|
636 |
max_new_tokens=max_new_tokens, max_token=max_token)
|
637 |
|
638 |
-
def run_format_agent(self, message: str,
|
639 |
-
|
|
|
|
|
|
|
|
|
|
|
640 |
if '[FinalAnswer]' in answer:
|
641 |
possible_final_answer = answer.split("[FinalAnswer]")[-1]
|
642 |
elif "\n\n" in answer:
|
643 |
possible_final_answer = answer.split("\n\n")[-1]
|
644 |
else:
|
645 |
possible_final_answer = answer.strip()
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
656 |
max_new_tokens=max_new_tokens, max_token=max_token)
|
657 |
|
658 |
-
def run_summary_agent(self, thought_calls: str,
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
666 |
max_new_tokens=max_new_tokens, max_token=max_token)
|
|
|
667 |
if '[' in output:
|
668 |
output = output.split('[')[0]
|
669 |
return output
|
670 |
|
671 |
def function_result_summary(self, input_list, status, enable_summary):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
672 |
if 'tool_call_step' not in status:
|
673 |
status['tool_call_step'] = 0
|
674 |
-
if 'step' not in status:
|
675 |
-
status['step'] = 0
|
676 |
-
status['step'] += 1
|
677 |
|
678 |
for idx in range(len(input_list)):
|
679 |
-
pos_id = len(input_list)
|
680 |
-
if input_list[pos_id]['role'] == 'assistant'
|
681 |
-
if '
|
682 |
-
|
|
|
683 |
break
|
684 |
|
|
|
|
|
|
|
|
|
|
|
685 |
if not enable_summary:
|
686 |
return status
|
687 |
|
688 |
if 'summarized_index' not in status:
|
689 |
status['summarized_index'] = 0
|
|
|
690 |
if 'summarized_step' not in status:
|
691 |
status['summarized_step'] = 0
|
|
|
692 |
if 'previous_length' not in status:
|
693 |
status['previous_length'] = 0
|
|
|
694 |
if 'history' not in status:
|
695 |
status['history'] = []
|
696 |
|
697 |
-
status['history'].append(
|
698 |
-
self.summary_mode == 'step' and status['summarized_step'] < status['step'] - status['tool_call_step'] - self.summary_skip_last_k)
|
699 |
-
|
700 |
-
idx = status['summarized_index']
|
701 |
function_response = ''
|
702 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
703 |
while idx < len(input_list):
|
704 |
-
if (self.summary_mode == 'step' and status['summarized_step'] < status['step']
|
705 |
-
|
706 |
if input_list[idx]['role'] == 'assistant':
|
707 |
if 'Tool_RAG' in str(input_list[idx]['tool_calls']):
|
708 |
this_thought_calls = None
|
709 |
else:
|
710 |
-
if function_response:
|
|
|
711 |
status['summarized_step'] += 1
|
712 |
result_summary = self.run_summary_agent(
|
713 |
-
thought_calls=this_thought_calls,
|
714 |
-
|
|
|
|
|
|
|
|
|
|
|
715 |
input_list.insert(
|
716 |
-
last_call_idx
|
717 |
status['summarized_index'] = last_call_idx + 2
|
718 |
idx += 1
|
|
|
719 |
last_call_idx = idx
|
720 |
-
this_thought_calls = input_list[idx]['content'] +
|
|
|
721 |
function_response = ''
|
722 |
-
|
|
|
723 |
function_response += input_list[idx]['content']
|
724 |
del input_list[idx]
|
725 |
idx -= 1
|
|
|
726 |
else:
|
727 |
break
|
728 |
idx += 1
|
729 |
|
730 |
-
if function_response:
|
731 |
status['summarized_step'] += 1
|
732 |
result_summary = self.run_summary_agent(
|
733 |
-
thought_calls=this_thought_calls,
|
734 |
-
|
|
|
|
|
|
|
|
|
|
|
735 |
tool_calls = json.loads(input_list[last_call_idx]['tool_calls'])
|
736 |
for tool_call in tool_calls:
|
737 |
del tool_call['call_id']
|
738 |
input_list[last_call_idx]['tool_calls'] = json.dumps(tool_calls)
|
739 |
input_list.insert(
|
740 |
-
last_call_idx
|
741 |
status['summarized_index'] = last_call_idx + 2
|
742 |
|
743 |
return status
|
744 |
|
|
|
|
|
|
|
745 |
def update_parameters(self, **kwargs):
|
746 |
-
updated_attributes = {}
|
747 |
for key, value in kwargs.items():
|
748 |
if hasattr(self, key):
|
749 |
setattr(self, key, value)
|
750 |
-
|
751 |
-
|
752 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
from tooluniverse import ToolUniverse
|
12 |
from gradio import ChatMessage
|
13 |
from .toolrag import ToolRAGModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
from .utils import NoRepeatSentenceProcessor, ReasoningTraceChecker, tool_result_format
|
16 |
|
17 |
+
|
18 |
class TxAgent:
|
19 |
def __init__(self, model_name,
|
20 |
rag_model_name,
|
21 |
+
tool_files_dict=None, # None leads to the default tool files in ToolUniverse
|
22 |
enable_finish=True,
|
23 |
enable_rag=True,
|
24 |
enable_summary=False,
|
25 |
+
init_rag_num=0,
|
26 |
+
step_rag_num=10,
|
27 |
summary_mode='step',
|
28 |
summary_skip_last_k=0,
|
29 |
summary_context_length=None,
|
|
|
32 |
seed=None,
|
33 |
enable_checker=False,
|
34 |
enable_chat=False,
|
35 |
+
additional_default_tools=None,
|
36 |
+
):
|
37 |
self.model_name = model_name
|
38 |
self.tokenizer = None
|
39 |
self.terminators = None
|
|
|
42 |
self.model = None
|
43 |
self.rag_model = ToolRAGModel(rag_model_name)
|
44 |
self.tooluniverse = None
|
45 |
+
# self.tool_desc = None
|
46 |
+
self.prompt_multi_step = "You are a helpful assistant that will solve problems through detailed, step-by-step reasoning and actions based on your reasoning. Typically, your actions will use the provided functions. You have access to the following functions."
|
47 |
+
self.self_prompt = "Strictly follow the instruction."
|
48 |
+
self.chat_prompt = "You are helpful assistant to chat with the user."
|
49 |
self.enable_finish = enable_finish
|
50 |
self.enable_rag = enable_rag
|
51 |
self.enable_summary = enable_summary
|
|
|
59 |
self.seed = seed
|
60 |
self.enable_checker = enable_checker
|
61 |
self.additional_default_tools = additional_default_tools
|
62 |
+
self.print_self_values()
|
63 |
|
64 |
def init_model(self):
|
65 |
self.load_models()
|
|
|
68 |
|
69 |
def print_self_values(self):
|
70 |
for attr, value in self.__dict__.items():
|
71 |
+
print(f"{attr}: {value}")
|
72 |
|
73 |
def load_models(self, model_name=None):
|
74 |
+
if model_name is not None:
|
75 |
+
if model_name == self.model_name:
|
76 |
+
return f"The model {model_name} is already loaded."
|
77 |
self.model_name = model_name
|
78 |
|
79 |
+
self.model = LLM(model=self.model_name)
|
80 |
+
self.chat_template = Template(self.model.get_tokenizer().chat_template)
|
81 |
+
self.tokenizer = self.model.get_tokenizer()
|
82 |
+
|
83 |
+
return f"Model {model_name} loaded successfully."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
def load_tooluniverse(self):
|
86 |
self.tooluniverse = ToolUniverse(tool_files=self.tool_files_dict)
|
|
|
88 |
special_tools = self.tooluniverse.prepare_tool_prompts(
|
89 |
self.tooluniverse.tool_category_dicts["special_tools"])
|
90 |
self.special_tools_name = [tool['name'] for tool in special_tools]
|
|
|
91 |
|
92 |
def load_tool_desc_embedding(self):
|
93 |
self.rag_model.load_tool_desc_embedding(self.tooluniverse)
|
|
|
94 |
|
95 |
def rag_infer(self, query, top_k=5):
|
96 |
return self.rag_model.rag_infer(query, top_k)
|
97 |
|
98 |
def initialize_tools_prompt(self, call_agent, call_agent_level, message):
|
99 |
picked_tools_prompt = []
|
100 |
+
picked_tools_prompt = self.add_special_tools(
|
101 |
+
picked_tools_prompt, call_agent=call_agent)
|
102 |
+
if call_agent:
|
103 |
+
call_agent_level += 1
|
104 |
+
if call_agent_level >= 2:
|
105 |
+
call_agent = False
|
106 |
+
|
107 |
+
if not call_agent:
|
108 |
+
picked_tools_prompt += self.tool_RAG(
|
109 |
+
message=message, rag_num=self.init_rag_num)
|
110 |
return picked_tools_prompt, call_agent_level
|
111 |
|
112 |
def initialize_conversation(self, message, conversation=None, history=None):
|
113 |
if conversation is None:
|
114 |
conversation = []
|
115 |
|
116 |
+
conversation = self.set_system_prompt(
|
117 |
+
conversation, self.prompt_multi_step)
|
118 |
+
if history is not None:
|
119 |
+
if len(history) == 0:
|
120 |
+
conversation = []
|
121 |
+
print("clear conversation successfully")
|
122 |
+
else:
|
123 |
+
for i in range(len(history)):
|
124 |
+
if history[i]['role'] == 'user':
|
125 |
+
if i-1 >= 0 and history[i-1]['role'] == 'assistant':
|
126 |
+
conversation.append(
|
127 |
+
{"role": "assistant", "content": history[i-1]['content']})
|
128 |
+
conversation.append(
|
129 |
+
{"role": "user", "content": history[i]['content']})
|
130 |
+
if i == len(history)-1 and history[i]['role'] == 'assistant':
|
131 |
+
conversation.append(
|
132 |
+
{"role": "assistant", "content": history[i]['content']})
|
133 |
+
|
134 |
conversation.append({"role": "user", "content": message})
|
135 |
+
|
136 |
return conversation
|
137 |
|
138 |
+
def tool_RAG(self, message=None,
|
139 |
+
picked_tool_names=None,
|
140 |
+
existing_tools_prompt=[],
|
141 |
+
rag_num=5,
|
142 |
+
return_call_result=False):
|
143 |
+
extra_factor = 30 # Factor to retrieve more than rag_num
|
144 |
if picked_tool_names is None:
|
145 |
+
assert picked_tool_names is not None or message is not None
|
146 |
+
picked_tool_names = self.rag_infer(
|
147 |
+
message, top_k=rag_num*extra_factor)
|
148 |
+
|
149 |
+
picked_tool_names_no_special = []
|
150 |
+
for tool in picked_tool_names:
|
151 |
+
if tool not in self.special_tools_name:
|
152 |
+
picked_tool_names_no_special.append(tool)
|
153 |
+
picked_tool_names_no_special = picked_tool_names_no_special[:rag_num]
|
154 |
+
picked_tool_names = picked_tool_names_no_special[:rag_num]
|
155 |
|
|
|
|
|
|
|
|
|
156 |
picked_tools = self.tooluniverse.get_tool_by_name(picked_tool_names)
|
157 |
+
picked_tools_prompt = self.tooluniverse.prepare_tool_prompts(
|
158 |
+
picked_tools)
|
159 |
if return_call_result:
|
160 |
return picked_tools_prompt, picked_tool_names
|
161 |
return picked_tools_prompt
|
162 |
|
163 |
def add_special_tools(self, tools, call_agent=False):
|
164 |
if self.enable_finish:
|
165 |
+
tools.append(self.tooluniverse.get_one_tool_by_one_name(
|
166 |
+
'Finish', return_prompt=True))
|
167 |
+
print("Finish tool is added")
|
168 |
+
if call_agent:
|
169 |
+
tools.append(self.tooluniverse.get_one_tool_by_one_name(
|
170 |
+
'CallAgent', return_prompt=True))
|
171 |
+
print("CallAgent tool is added")
|
172 |
+
else:
|
173 |
+
if self.enable_rag:
|
174 |
+
tools.append(self.tooluniverse.get_one_tool_by_one_name(
|
175 |
+
'Tool_RAG', return_prompt=True))
|
176 |
+
print("Tool_RAG tool is added")
|
177 |
+
|
178 |
+
if self.additional_default_tools is not None:
|
179 |
+
for each_tool_name in self.additional_default_tools:
|
180 |
+
tool_prompt = self.tooluniverse.get_one_tool_by_one_name(
|
181 |
+
each_tool_name, return_prompt=True)
|
182 |
+
if tool_prompt is not None:
|
183 |
+
print(f"{each_tool_name} tool is added")
|
184 |
+
tools.append(tool_prompt)
|
185 |
return tools
|
186 |
|
187 |
def add_finish_tools(self, tools):
|
188 |
+
tools.append(self.tooluniverse.get_one_tool_by_one_name(
|
189 |
+
'Finish', return_prompt=True))
|
190 |
+
print("Finish tool is added")
|
191 |
return tools
|
192 |
|
193 |
def set_system_prompt(self, conversation, sys_prompt):
|
194 |
+
if len(conversation) == 0:
|
195 |
+
conversation.append(
|
196 |
+
{"role": "system", "content": sys_prompt})
|
197 |
else:
|
198 |
conversation[0] = {"role": "system", "content": sys_prompt}
|
199 |
return conversation
|
200 |
|
201 |
+
def run_function_call(self, fcall_str,
|
202 |
+
return_message=False,
|
203 |
+
existing_tools_prompt=None,
|
204 |
+
message_for_call_agent=None,
|
205 |
+
call_agent=False,
|
206 |
+
call_agent_level=None,
|
207 |
+
temperature=None):
|
208 |
+
|
209 |
function_call_json, message = self.tooluniverse.extract_function_call_json(
|
210 |
fcall_str, return_message=return_message, verbose=False)
|
211 |
call_results = []
|
212 |
special_tool_call = ''
|
213 |
+
if function_call_json is not None:
|
214 |
+
if isinstance(function_call_json, list):
|
215 |
+
for i in range(len(function_call_json)):
|
216 |
+
print("\033[94mTool Call:\033[0m", function_call_json[i])
|
217 |
+
if function_call_json[i]["name"] == 'Finish':
|
218 |
+
special_tool_call = 'Finish'
|
219 |
+
break
|
220 |
+
elif function_call_json[i]["name"] == 'Tool_RAG':
|
221 |
+
new_tools_prompt, call_result = self.tool_RAG(
|
222 |
+
message=message,
|
223 |
+
existing_tools_prompt=existing_tools_prompt,
|
224 |
+
rag_num=self.step_rag_num,
|
225 |
+
return_call_result=True)
|
226 |
+
existing_tools_prompt += new_tools_prompt
|
227 |
+
elif function_call_json[i]["name"] == 'CallAgent':
|
228 |
+
if call_agent_level < 2 and call_agent:
|
229 |
+
solution_plan = function_call_json[i]['arguments']['solution']
|
230 |
+
full_message = (
|
231 |
+
message_for_call_agent +
|
232 |
+
"\nYou must follow the following plan to answer the question: " +
|
233 |
+
str(solution_plan)
|
234 |
+
)
|
235 |
+
call_result = self.run_multistep_agent(
|
236 |
+
full_message, temperature=temperature,
|
237 |
+
max_new_tokens=1024, max_token=99999,
|
238 |
+
call_agent=False, call_agent_level=call_agent_level)
|
239 |
+
call_result = call_result.split(
|
240 |
+
'[FinalAnswer]')[-1].strip()
|
241 |
+
else:
|
242 |
+
call_result = "Error: The CallAgent has been disabled. Please proceed with your reasoning process to solve this question."
|
243 |
+
else:
|
244 |
+
call_result = self.tooluniverse.run_one_function(
|
245 |
+
function_call_json[i])
|
246 |
+
|
247 |
+
call_id = self.tooluniverse.call_id_gen()
|
248 |
+
function_call_json[i]["call_id"] = call_id
|
249 |
+
print("\033[94mTool Call Result:\033[0m", call_result)
|
250 |
+
call_results.append({
|
251 |
+
"role": "tool",
|
252 |
+
"content": json.dumps({"content": call_result, "call_id": call_id})
|
253 |
+
})
|
254 |
else:
|
255 |
call_results.append({
|
256 |
"role": "tool",
|
257 |
+
"content": json.dumps({"content": "Not a valid function call, please check the function call format."})
|
258 |
})
|
259 |
|
260 |
revised_messages = [{
|
261 |
"role": "assistant",
|
262 |
+
"content": message.strip(),
|
263 |
"tool_calls": json.dumps(function_call_json)
|
264 |
}] + call_results
|
265 |
+
|
266 |
+
# Yield the final result.
|
267 |
return revised_messages, existing_tools_prompt, special_tool_call
|
268 |
|
269 |
+
def run_function_call_stream(self, fcall_str,
|
270 |
+
return_message=False,
|
271 |
+
existing_tools_prompt=None,
|
272 |
+
message_for_call_agent=None,
|
273 |
+
call_agent=False,
|
274 |
+
call_agent_level=None,
|
275 |
+
temperature=None,
|
276 |
+
return_gradio_history=True):
|
277 |
+
|
278 |
function_call_json, message = self.tooluniverse.extract_function_call_json(
|
279 |
fcall_str, return_message=return_message, verbose=False)
|
280 |
call_results = []
|
281 |
special_tool_call = ''
|
282 |
+
if return_gradio_history:
|
283 |
+
gradio_history = []
|
284 |
+
if function_call_json is not None:
|
285 |
+
if isinstance(function_call_json, list):
|
286 |
+
for i in range(len(function_call_json)):
|
287 |
+
if function_call_json[i]["name"] == 'Finish':
|
288 |
+
special_tool_call = 'Finish'
|
289 |
+
break
|
290 |
+
elif function_call_json[i]["name"] == 'Tool_RAG':
|
291 |
+
new_tools_prompt, call_result = self.tool_RAG(
|
292 |
+
message=message,
|
293 |
+
existing_tools_prompt=existing_tools_prompt,
|
294 |
+
rag_num=self.step_rag_num,
|
295 |
+
return_call_result=True)
|
296 |
+
existing_tools_prompt += new_tools_prompt
|
297 |
+
elif function_call_json[i]["name"] == 'DirectResponse':
|
298 |
+
call_result = function_call_json[i]['arguments']['respose']
|
299 |
+
special_tool_call = 'DirectResponse'
|
300 |
+
elif function_call_json[i]["name"] == 'RequireClarification':
|
301 |
+
call_result = function_call_json[i]['arguments']['unclear_question']
|
302 |
+
special_tool_call = 'RequireClarification'
|
303 |
+
elif function_call_json[i]["name"] == 'CallAgent':
|
304 |
+
if call_agent_level < 2 and call_agent:
|
305 |
+
solution_plan = function_call_json[i]['arguments']['solution']
|
306 |
+
full_message = (
|
307 |
+
message_for_call_agent +
|
308 |
+
"\nYou must follow the following plan to answer the question: " +
|
309 |
+
str(solution_plan)
|
310 |
+
)
|
311 |
+
sub_agent_task = "Sub TxAgent plan: " + \
|
312 |
+
str(solution_plan)
|
313 |
+
# When streaming, yield responses as they arrive.
|
314 |
+
call_result = yield from self.run_gradio_chat(
|
315 |
+
full_message, history=[], temperature=temperature,
|
316 |
+
max_new_tokens=1024, max_token=99999,
|
317 |
+
call_agent=False, call_agent_level=call_agent_level,
|
318 |
+
conversation=None,
|
319 |
+
sub_agent_task=sub_agent_task)
|
320 |
+
|
321 |
+
call_result = call_result.split(
|
322 |
+
'[FinalAnswer]')[-1]
|
323 |
+
else:
|
324 |
+
call_result = "Error: The CallAgent has been disabled. Please proceed with your reasoning process to solve this question."
|
325 |
+
else:
|
326 |
+
call_result = self.tooluniverse.run_one_function(
|
327 |
+
function_call_json[i])
|
328 |
+
|
329 |
+
call_id = self.tooluniverse.call_id_gen()
|
330 |
+
function_call_json[i]["call_id"] = call_id
|
331 |
+
call_results.append({
|
332 |
+
"role": "tool",
|
333 |
+
"content": json.dumps({"content": call_result, "call_id": call_id})
|
334 |
+
})
|
335 |
+
if return_gradio_history and function_call_json[i]["name"] != 'Finish':
|
336 |
+
if function_call_json[i]["name"] == 'Tool_RAG':
|
337 |
+
gradio_history.append(ChatMessage(role="assistant", content=str(call_result), metadata={
|
338 |
+
"title": "🧰 "+function_call_json[i]['name'], "log": str(function_call_json[i]['arguments'])}))
|
339 |
+
|
340 |
+
else:
|
341 |
+
gradio_history.append(ChatMessage(role="assistant", content=str(call_result), metadata={
|
342 |
+
"title": "⚒️ "+function_call_json[i]['name'], "log": str(function_call_json[i]['arguments'])}))
|
343 |
else:
|
344 |
call_results.append({
|
345 |
"role": "tool",
|
346 |
+
"content": json.dumps({"content": "Not a valid function call, please check the function call format."})
|
347 |
})
|
348 |
|
349 |
revised_messages = [{
|
350 |
"role": "assistant",
|
351 |
+
"content": message.strip(),
|
352 |
"tool_calls": json.dumps(function_call_json)
|
353 |
}] + call_results
|
|
|
354 |
|
355 |
+
# Yield the final result.
|
356 |
+
if return_gradio_history:
|
357 |
+
return revised_messages, existing_tools_prompt, special_tool_call, gradio_history
|
358 |
+
else:
|
359 |
+
return revised_messages, existing_tools_prompt, special_tool_call
|
360 |
+
|
361 |
+
def get_answer_based_on_unfinished_reasoning(self, conversation, temperature, max_new_tokens, max_token, outputs=None):
|
362 |
+
if conversation[-1]['role'] == 'assisant':
|
363 |
conversation.append(
|
364 |
+
{'role': 'tool', 'content': 'Errors happen during the function call, please come up with the final answer with the current information.'})
|
365 |
finish_tools_prompt = self.add_finish_tools([])
|
|
|
|
|
|
|
|
|
|
|
366 |
|
367 |
+
last_outputs_str = self.llm_infer(messages=conversation,
|
368 |
+
temperature=temperature,
|
369 |
+
tools=finish_tools_prompt,
|
370 |
+
output_begin_string='Since I cannot continue reasoning, I will provide the final answer based on the current information and general knowledge.\n\n[FinalAnswer]',
|
371 |
+
skip_special_tokens=True,
|
372 |
+
max_new_tokens=max_new_tokens, max_token=max_token)
|
373 |
+
print(last_outputs_str)
|
374 |
+
return last_outputs_str
|
375 |
+
|
376 |
+
def run_multistep_agent(self, message: str,
|
377 |
+
temperature: float,
|
378 |
+
max_new_tokens: int,
|
379 |
+
max_token: int,
|
380 |
+
max_round: int = 20,
|
381 |
+
call_agent=False,
|
382 |
+
call_agent_level=0) -> str:
|
383 |
+
"""
|
384 |
+
Generate a streaming response using the llama3-8b model.
|
385 |
+
Args:
|
386 |
+
message (str): The input message.
|
387 |
+
temperature (float): The temperature for generating the response.
|
388 |
+
max_new_tokens (int): The maximum number of new tokens to generate.
|
389 |
+
Returns:
|
390 |
+
str: The generated response.
|
391 |
+
"""
|
392 |
+
print("\033[1;32;40mstart\033[0m")
|
393 |
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
394 |
call_agent, call_agent_level, message)
|
395 |
conversation = self.initialize_conversation(message)
|
396 |
+
|
397 |
outputs = []
|
398 |
last_outputs = []
|
399 |
next_round = True
|
400 |
+
function_call_messages = []
|
401 |
current_round = 0
|
402 |
token_overflow = False
|
403 |
enable_summary = False
|
|
|
405 |
|
406 |
if self.enable_checker:
|
407 |
checker = ReasoningTraceChecker(message, conversation)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
408 |
try:
|
409 |
while next_round and current_round < max_round:
|
410 |
current_round += 1
|
411 |
+
if len(outputs) > 0:
|
|
|
412 |
function_call_messages, picked_tools_prompt, special_tool_call = self.run_function_call(
|
413 |
+
last_outputs, return_message=True,
|
414 |
+
existing_tools_prompt=picked_tools_prompt,
|
415 |
+
message_for_call_agent=message,
|
416 |
+
call_agent=call_agent,
|
417 |
+
call_agent_level=call_agent_level,
|
418 |
+
temperature=temperature)
|
419 |
+
|
420 |
if special_tool_call == 'Finish':
|
421 |
next_round = False
|
422 |
conversation.extend(function_call_messages)
|
423 |
+
if isinstance(function_call_messages[0]['content'], types.GeneratorType):
|
424 |
+
function_call_messages[0]['content'] = next(
|
425 |
+
function_call_messages[0]['content'])
|
426 |
+
return function_call_messages[0]['content'].split('[FinalAnswer]')[-1]
|
427 |
|
428 |
if (self.enable_summary or token_overflow) and not call_agent:
|
429 |
+
if token_overflow:
|
430 |
+
print("token_overflow, using summary")
|
431 |
enable_summary = True
|
432 |
last_status = self.function_result_summary(
|
433 |
conversation, status=last_status, enable_summary=enable_summary)
|
434 |
|
435 |
+
if function_call_messages is not None:
|
436 |
conversation.extend(function_call_messages)
|
437 |
+
outputs.append(tool_result_format(
|
438 |
+
function_call_messages))
|
439 |
else:
|
440 |
next_round = False
|
441 |
+
conversation.extend(
|
442 |
+
[{"role": "assistant", "content": ''.join(last_outputs)}])
|
443 |
+
return ''.join(last_outputs).replace("</s>", "")
|
444 |
if self.enable_checker:
|
445 |
good_status, wrong_info = checker.check_conversation()
|
446 |
if not good_status:
|
447 |
+
next_round = False
|
448 |
+
print(
|
449 |
+
"Internal error in reasoning: " + wrong_info)
|
450 |
break
|
451 |
+
last_outputs = []
|
452 |
+
outputs.append("### TxAgent:\n")
|
453 |
+
last_outputs_str, token_overflow = self.llm_infer(messages=conversation,
|
454 |
+
temperature=temperature,
|
455 |
+
tools=picked_tools_prompt,
|
456 |
+
skip_special_tokens=False,
|
457 |
+
max_new_tokens=max_new_tokens, max_token=max_token,
|
458 |
+
check_token_status=True)
|
459 |
+
if last_outputs_str is None:
|
460 |
+
next_round = False
|
461 |
+
print(
|
462 |
+
"The number of tokens exceeds the maximum limit.")
|
463 |
+
else:
|
464 |
+
last_outputs.append(last_outputs_str)
|
465 |
+
if max_round == current_round:
|
466 |
+
print("The number of rounds exceeds the maximum limit!")
|
467 |
+
if self.force_finish:
|
468 |
+
return self.get_answer_based_on_unfinished_reasoning(conversation, temperature, max_new_tokens, max_token)
|
469 |
+
else:
|
470 |
+
return None
|
471 |
|
472 |
+
except Exception as e:
|
473 |
+
print(f"Error: {e}")
|
474 |
+
if self.force_finish:
|
475 |
+
return self.get_answer_based_on_unfinished_reasoning(conversation, temperature, max_new_tokens, max_token)
|
476 |
+
else:
|
477 |
+
return None
|
478 |
|
479 |
+
def build_logits_processor(self, messages, llm):
|
480 |
+
# Use the tokenizer from the LLM instance.
|
481 |
+
tokenizer = llm.get_tokenizer()
|
482 |
+
if self.avoid_repeat and len(messages) > 2:
|
483 |
+
assistant_messages = []
|
484 |
+
for i in range(1, len(messages) + 1):
|
485 |
+
if messages[-i]['role'] == 'assistant':
|
486 |
+
assistant_messages.append(messages[-i]['content'])
|
487 |
+
if len(assistant_messages) == 2:
|
488 |
break
|
489 |
+
forbidden_ids = [tokenizer.encode(
|
490 |
+
msg, add_special_tokens=False) for msg in assistant_messages]
|
491 |
+
return [NoRepeatSentenceProcessor(forbidden_ids, 5)]
|
492 |
+
else:
|
493 |
+
return None
|
494 |
|
495 |
+
def llm_infer(self, messages, temperature=0.1, tools=None,
|
496 |
+
output_begin_string=None, max_new_tokens=2048,
|
497 |
+
max_token=None, skip_special_tokens=True,
|
498 |
+
model=None, tokenizer=None, terminators=None, seed=None, check_token_status=False):
|
499 |
|
500 |
+
if model is None:
|
501 |
+
model = self.model
|
502 |
+
|
503 |
+
logits_processor = self.build_logits_processor(messages, model)
|
504 |
+
sampling_params = SamplingParams(
|
505 |
+
temperature=temperature,
|
506 |
+
max_tokens=max_new_tokens,
|
507 |
+
logits_processors=logits_processor,
|
508 |
+
seed=seed if seed is not None else self.seed,
|
509 |
+
)
|
510 |
|
511 |
+
prompt = self.chat_template.render(
|
512 |
+
messages=messages, tools=tools, add_generation_prompt=True)
|
513 |
+
if output_begin_string is not None:
|
514 |
+
prompt += output_begin_string
|
|
|
|
|
|
|
515 |
|
516 |
+
if check_token_status and max_token is not None:
|
517 |
+
token_overflow = False
|
518 |
+
num_input_tokens = len(self.tokenizer.encode(
|
519 |
+
prompt, return_tensors="pt")[0])
|
520 |
+
if max_token is not None:
|
521 |
+
if num_input_tokens > max_token:
|
522 |
+
torch.cuda.empty_cache()
|
523 |
+
gc.collect()
|
524 |
+
print("Number of input tokens before inference:",
|
525 |
+
num_input_tokens)
|
526 |
+
logger.info(
|
527 |
+
"The number of tokens exceeds the maximum limit!!!!")
|
528 |
+
token_overflow = True
|
529 |
+
return None, token_overflow
|
530 |
+
output = model.generate(
|
531 |
+
prompt,
|
532 |
+
sampling_params=sampling_params,
|
533 |
+
)
|
534 |
+
output = output[0].outputs[0].text
|
535 |
+
print("\033[92m" + output + "\033[0m")
|
536 |
+
if check_token_status and max_token is not None:
|
537 |
+
return output, token_overflow
|
538 |
+
|
539 |
+
return output
|
540 |
+
|
541 |
+
def run_self_agent(self, message: str,
|
542 |
+
temperature: float,
|
543 |
+
max_new_tokens: int,
|
544 |
+
max_token: int) -> str:
|
545 |
+
|
546 |
+
print("\033[1;32;40mstart self agent\033[0m")
|
547 |
+
conversation = []
|
548 |
+
conversation = self.set_system_prompt(conversation, self.self_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
549 |
conversation.append({"role": "user", "content": message})
|
550 |
+
return self.llm_infer(messages=conversation,
|
551 |
+
temperature=temperature,
|
552 |
+
tools=None,
|
553 |
max_new_tokens=max_new_tokens, max_token=max_token)
|
554 |
|
555 |
+
def run_chat_agent(self, message: str,
|
556 |
+
temperature: float,
|
557 |
+
max_new_tokens: int,
|
558 |
+
max_token: int) -> str:
|
559 |
+
|
560 |
+
print("\033[1;32;40mstart chat agent\033[0m")
|
561 |
+
conversation = []
|
562 |
+
conversation = self.set_system_prompt(conversation, self.chat_prompt)
|
563 |
conversation.append({"role": "user", "content": message})
|
564 |
+
return self.llm_infer(messages=conversation,
|
565 |
+
temperature=temperature,
|
566 |
+
tools=None,
|
567 |
max_new_tokens=max_new_tokens, max_token=max_token)
|
568 |
|
569 |
+
def run_format_agent(self, message: str,
|
570 |
+
answer: str,
|
571 |
+
temperature: float,
|
572 |
+
max_new_tokens: int,
|
573 |
+
max_token: int) -> str:
|
574 |
+
|
575 |
+
print("\033[1;32;40mstart format agent\033[0m")
|
576 |
if '[FinalAnswer]' in answer:
|
577 |
possible_final_answer = answer.split("[FinalAnswer]")[-1]
|
578 |
elif "\n\n" in answer:
|
579 |
possible_final_answer = answer.split("\n\n")[-1]
|
580 |
else:
|
581 |
possible_final_answer = answer.strip()
|
582 |
+
if len(possible_final_answer) == 1:
|
583 |
+
choice = possible_final_answer[0]
|
584 |
+
if choice in ['A', 'B', 'C', 'D', 'E']:
|
585 |
+
return choice
|
586 |
+
elif len(possible_final_answer) > 1:
|
587 |
+
if possible_final_answer[1] == ':':
|
588 |
+
choice = possible_final_answer[0]
|
589 |
+
if choice in ['A', 'B', 'C', 'D', 'E']:
|
590 |
+
print("choice", choice)
|
591 |
+
return choice
|
592 |
+
|
593 |
+
conversation = []
|
594 |
+
format_prompt = f"You are helpful assistant to transform the answer of agent to the final answer of 'A', 'B', 'C', 'D'."
|
595 |
+
conversation = self.set_system_prompt(conversation, format_prompt)
|
596 |
+
conversation.append({"role": "user", "content": message +
|
597 |
+
"\nThe final answer of agent:" + answer + "\n The answer is (must be a letter):"})
|
598 |
+
return self.llm_infer(messages=conversation,
|
599 |
+
temperature=temperature,
|
600 |
+
tools=None,
|
601 |
max_new_tokens=max_new_tokens, max_token=max_token)
|
602 |
|
603 |
+
def run_summary_agent(self, thought_calls: str,
|
604 |
+
function_response: str,
|
605 |
+
temperature: float,
|
606 |
+
max_new_tokens: int,
|
607 |
+
max_token: int) -> str:
|
608 |
+
print("\033[1;32;40mSummarized Tool Result:\033[0m")
|
609 |
+
generate_tool_result_summary_training_prompt = """Thought and function calls:
|
610 |
+
{thought_calls}
|
611 |
+
|
612 |
+
Function calls' responses:
|
613 |
+
\"\"\"
|
614 |
+
{function_response}
|
615 |
+
\"\"\"
|
616 |
+
|
617 |
+
Based on the Thought and function calls, and the function calls' responses, you need to generate a summary of the function calls' responses that fulfills the requirements of the thought. The summary MUST BE ONE sentence and include all necessary information.
|
618 |
+
|
619 |
+
Directly respond with the summarized sentence of the function calls' responses only.
|
620 |
+
|
621 |
+
Generate **one summarized sentence** about "function calls' responses" with necessary information, and respond with a string:
|
622 |
+
""".format(thought_calls=thought_calls, function_response=function_response)
|
623 |
+
conversation = []
|
624 |
+
conversation.append(
|
625 |
+
{"role": "user", "content": generate_tool_result_summary_training_prompt})
|
626 |
+
output = self.llm_infer(messages=conversation,
|
627 |
+
temperature=temperature,
|
628 |
+
tools=None,
|
629 |
max_new_tokens=max_new_tokens, max_token=max_token)
|
630 |
+
|
631 |
if '[' in output:
|
632 |
output = output.split('[')[0]
|
633 |
return output
|
634 |
|
635 |
def function_result_summary(self, input_list, status, enable_summary):
|
636 |
+
"""
|
637 |
+
Processes the input list, extracting information from sequences of 'user', 'tool', 'assistant' roles.
|
638 |
+
Supports 'length' and 'step' modes, and skips the last 'k' groups.
|
639 |
+
|
640 |
+
Parameters:
|
641 |
+
input_list (list): A list of dictionaries containing role and other information.
|
642 |
+
summary_skip_last_k (int): Number of groups to skip from the end. Defaults to 0.
|
643 |
+
summary_context_length (int): The context length threshold for the 'length' mode.
|
644 |
+
last_processed_index (tuple or int): The last processed index.
|
645 |
+
|
646 |
+
Returns:
|
647 |
+
list: A list of extracted information from valid sequences.
|
648 |
+
"""
|
649 |
if 'tool_call_step' not in status:
|
650 |
status['tool_call_step'] = 0
|
|
|
|
|
|
|
651 |
|
652 |
for idx in range(len(input_list)):
|
653 |
+
pos_id = len(input_list)-idx-1
|
654 |
+
if input_list[pos_id]['role'] == 'assistant':
|
655 |
+
if 'tool_calls' in input_list[pos_id]:
|
656 |
+
if 'Tool_RAG' in str(input_list[pos_id]['tool_calls']):
|
657 |
+
status['tool_call_step'] += 1
|
658 |
break
|
659 |
|
660 |
+
if 'step' in status:
|
661 |
+
status['step'] += 1
|
662 |
+
else:
|
663 |
+
status['step'] = 0
|
664 |
+
|
665 |
if not enable_summary:
|
666 |
return status
|
667 |
|
668 |
if 'summarized_index' not in status:
|
669 |
status['summarized_index'] = 0
|
670 |
+
|
671 |
if 'summarized_step' not in status:
|
672 |
status['summarized_step'] = 0
|
673 |
+
|
674 |
if 'previous_length' not in status:
|
675 |
status['previous_length'] = 0
|
676 |
+
|
677 |
if 'history' not in status:
|
678 |
status['history'] = []
|
679 |
|
|
|
|
|
|
|
|
|
680 |
function_response = ''
|
681 |
+
idx = 0
|
682 |
+
current_summarized_index = status['summarized_index']
|
683 |
+
|
684 |
+
status['history'].append(self.summary_mode == 'step' and status['summarized_step']
|
685 |
+
< status['step']-status['tool_call_step']-self.summary_skip_last_k)
|
686 |
+
|
687 |
+
idx = current_summarized_index
|
688 |
while idx < len(input_list):
|
689 |
+
if (self.summary_mode == 'step' and status['summarized_step'] < status['step']-status['tool_call_step']-self.summary_skip_last_k) or (self.summary_mode == 'length' and status['previous_length'] > self.summary_context_length):
|
690 |
+
|
691 |
if input_list[idx]['role'] == 'assistant':
|
692 |
if 'Tool_RAG' in str(input_list[idx]['tool_calls']):
|
693 |
this_thought_calls = None
|
694 |
else:
|
695 |
+
if len(function_response) != 0:
|
696 |
+
print("internal summary")
|
697 |
status['summarized_step'] += 1
|
698 |
result_summary = self.run_summary_agent(
|
699 |
+
thought_calls=this_thought_calls,
|
700 |
+
function_response=function_response,
|
701 |
+
temperature=0.1,
|
702 |
+
max_new_tokens=1024,
|
703 |
+
max_token=99999
|
704 |
+
)
|
705 |
+
|
706 |
input_list.insert(
|
707 |
+
last_call_idx+1, {'role': 'tool', 'content': result_summary})
|
708 |
status['summarized_index'] = last_call_idx + 2
|
709 |
idx += 1
|
710 |
+
|
711 |
last_call_idx = idx
|
712 |
+
this_thought_calls = input_list[idx]['content'] + \
|
713 |
+
input_list[idx]['tool_calls']
|
714 |
function_response = ''
|
715 |
+
|
716 |
+
elif input_list[idx]['role'] == 'tool' and this_thought_calls is not None:
|
717 |
function_response += input_list[idx]['content']
|
718 |
del input_list[idx]
|
719 |
idx -= 1
|
720 |
+
|
721 |
else:
|
722 |
break
|
723 |
idx += 1
|
724 |
|
725 |
+
if len(function_response) != 0:
|
726 |
status['summarized_step'] += 1
|
727 |
result_summary = self.run_summary_agent(
|
728 |
+
thought_calls=this_thought_calls,
|
729 |
+
function_response=function_response,
|
730 |
+
temperature=0.1,
|
731 |
+
max_new_tokens=1024,
|
732 |
+
max_token=99999
|
733 |
+
)
|
734 |
+
|
735 |
tool_calls = json.loads(input_list[last_call_idx]['tool_calls'])
|
736 |
for tool_call in tool_calls:
|
737 |
del tool_call['call_id']
|
738 |
input_list[last_call_idx]['tool_calls'] = json.dumps(tool_calls)
|
739 |
input_list.insert(
|
740 |
+
last_call_idx+1, {'role': 'tool', 'content': result_summary})
|
741 |
status['summarized_index'] = last_call_idx + 2
|
742 |
|
743 |
return status
|
744 |
|
745 |
+
# Following are Gradio related functions
|
746 |
+
|
747 |
+
# General update method that accepts any new arguments through kwargs
|
748 |
def update_parameters(self, **kwargs):
|
|
|
749 |
for key, value in kwargs.items():
|
750 |
if hasattr(self, key):
|
751 |
setattr(self, key, value)
|
752 |
+
|
753 |
+
# Return the updated attributes
|
754 |
+
updated_attributes = {key: value for key,
|
755 |
+
value in kwargs.items() if hasattr(self, key)}
|
756 |
+
return updated_attributes
|
757 |
+
|
758 |
+
def run_gradio_chat(self, message: str,
|
759 |
+
history: list,
|
760 |
+
temperature: float,
|
761 |
+
max_new_tokens: int,
|
762 |
+
max_token: int,
|
763 |
+
call_agent: bool,
|
764 |
+
conversation: gr.State,
|
765 |
+
max_round: int = 20,
|
766 |
+
seed: int = None,
|
767 |
+
call_agent_level: int = 0,
|
768 |
+
sub_agent_task: str = None) -> str:
|
769 |
+
"""
|
770 |
+
Generate a streaming response using the llama3-8b model.
|
771 |
+
Args:
|
772 |
+
message (str): The input message.
|
773 |
+
history (list): The conversation history used by ChatInterface.
|
774 |
+
temperature (float): The temperature for generating the response.
|
775 |
+
max_new_tokens (int): The maximum number of new tokens to generate.
|
776 |
+
Returns:
|
777 |
+
str: The generated response.
|
778 |
+
"""
|
779 |
+
print("\033[1;32;40mstart\033[0m")
|
780 |
+
print("len(message)", len(message))
|
781 |
+
if len(message) <= 10:
|
782 |
+
yield "Hi, I am TxAgent, an assistant for answering biomedical questions. Please provide a valid message with a string longer than 10 characters."
|
783 |
+
return "Please provide a valid message."
|
784 |
+
outputs = []
|
785 |
+
outputs_str = ''
|
786 |
+
last_outputs = []
|
787 |
+
|
788 |
+
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
789 |
+
call_agent,
|
790 |
+
call_agent_level,
|
791 |
+
message)
|
792 |
+
|
793 |
+
conversation = self.initialize_conversation(
|
794 |
+
message,
|
795 |
+
conversation=conversation,
|
796 |
+
history=history)
|
797 |
+
history = []
|
798 |
+
|
799 |
+
next_round = True
|
800 |
+
function_call_messages = []
|
801 |
+
current_round = 0
|
802 |
+
enable_summary = False
|
803 |
+
last_status = {} # for summary
|
804 |
+
token_overflow = False
|
805 |
+
if self.enable_checker:
|
806 |
+
checker = ReasoningTraceChecker(
|
807 |
+
message, conversation, init_index=len(conversation))
|
808 |
+
|
809 |
+
try:
|
810 |
+
while next_round and current_round < max_round:
|
811 |
+
current_round += 1
|
812 |
+
if len(last_outputs) > 0:
|
813 |
+
function_call_messages, picked_tools_prompt, special_tool_call, current_gradio_history = yield from self.run_function_call_stream(
|
814 |
+
last_outputs, return_message=True,
|
815 |
+
existing_tools_prompt=picked_tools_prompt,
|
816 |
+
message_for_call_agent=message,
|
817 |
+
call_agent=call_agent,
|
818 |
+
call_agent_level=call_agent_level,
|
819 |
+
temperature=temperature)
|
820 |
+
history.extend(current_gradio_history)
|
821 |
+
if special_tool_call == 'Finish':
|
822 |
+
yield history
|
823 |
+
next_round = False
|
824 |
+
conversation.extend(function_call_messages)
|
825 |
+
return function_call_messages[0]['content']
|
826 |
+
elif special_tool_call == 'RequireClarification' or special_tool_call == 'DirectResponse':
|
827 |
+
history.append(
|
828 |
+
ChatMessage(role="assistant", content=history[-1].content))
|
829 |
+
yield history
|
830 |
+
next_round = False
|
831 |
+
return history[-1].content
|
832 |
+
if (self.enable_summary or token_overflow) and not call_agent:
|
833 |
+
if token_overflow:
|
834 |
+
print("token_overflow, using summary")
|
835 |
+
enable_summary = True
|
836 |
+
last_status = self.function_result_summary(
|
837 |
+
conversation, status=last_status,
|
838 |
+
enable_summary=enable_summary)
|
839 |
+
if function_call_messages is not None:
|
840 |
+
conversation.extend(function_call_messages)
|
841 |
+
formated_md_function_call_messages = tool_result_format(
|
842 |
+
function_call_messages)
|
843 |
+
yield history
|
844 |
+
else:
|
845 |
+
next_round = False
|
846 |
+
conversation.extend(
|
847 |
+
[{"role": "assistant", "content": ''.join(last_outputs)}])
|
848 |
+
return ''.join(last_outputs).replace("</s>", "")
|
849 |
+
if self.enable_checker:
|
850 |
+
good_status, wrong_info = checker.check_conversation()
|
851 |
+
if not good_status:
|
852 |
+
next_round = False
|
853 |
+
print("Internal error in reasoning: " + wrong_info)
|
854 |
+
break
|
855 |
+
last_outputs = []
|
856 |
+
last_outputs_str, token_overflow = self.llm_infer(
|
857 |
+
messages=conversation,
|
858 |
+
temperature=temperature,
|
859 |
+
tools=picked_tools_prompt,
|
860 |
+
skip_special_tokens=False,
|
861 |
+
max_new_tokens=max_new_tokens,
|
862 |
+
max_token=max_token,
|
863 |
+
seed=seed,
|
864 |
+
check_token_status=True)
|
865 |
+
last_thought = last_outputs_str.split("[TOOL_CALLS]")[0]
|
866 |
+
for each in history:
|
867 |
+
if each.metadata is not None:
|
868 |
+
each.metadata['status'] = 'done'
|
869 |
+
if '[FinalAnswer]' in last_thought:
|
870 |
+
final_thought, final_answer = last_thought.split(
|
871 |
+
'[FinalAnswer]')
|
872 |
+
history.append(
|
873 |
+
ChatMessage(role="assistant",
|
874 |
+
content=final_thought.strip())
|
875 |
+
)
|
876 |
+
yield history
|
877 |
+
history.append(
|
878 |
+
ChatMessage(
|
879 |
+
role="assistant", content="**Answer**:\n"+final_answer.strip())
|
880 |
+
)
|
881 |
+
yield history
|
882 |
+
else:
|
883 |
+
history.append(ChatMessage(
|
884 |
+
role="assistant", content=last_thought))
|
885 |
+
yield history
|
886 |
+
|
887 |
+
last_outputs.append(last_outputs_str)
|
888 |
+
|
889 |
+
if next_round:
|
890 |
+
if self.force_finish:
|
891 |
+
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
|
892 |
+
conversation, temperature, max_new_tokens, max_token)
|
893 |
+
for each in history:
|
894 |
+
if each.metadata is not None:
|
895 |
+
each.metadata['status'] = 'done'
|
896 |
+
if '[FinalAnswer]' in last_thought:
|
897 |
+
final_thought, final_answer = last_thought.split(
|
898 |
+
'[FinalAnswer]')
|
899 |
+
history.append(
|
900 |
+
ChatMessage(role="assistant",
|
901 |
+
content=final_thought.strip())
|
902 |
+
)
|
903 |
+
yield history
|
904 |
+
history.append(
|
905 |
+
ChatMessage(
|
906 |
+
role="assistant", content="**Answer**:\n"+final_answer.strip())
|
907 |
+
)
|
908 |
+
yield history
|
909 |
+
else:
|
910 |
+
yield "The number of rounds exceeds the maximum limit!"
|
911 |
+
|
912 |
+
except Exception as e:
|
913 |
+
print(f"Error: {e}")
|
914 |
+
if self.force_finish:
|
915 |
+
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
|
916 |
+
conversation,
|
917 |
+
temperature,
|
918 |
+
max_new_tokens,
|
919 |
+
max_token)
|
920 |
+
for each in history:
|
921 |
+
if each.metadata is not None:
|
922 |
+
each.metadata['status'] = 'done'
|
923 |
+
if '[FinalAnswer]' in last_thought or '"name": "Finish",' in last_outputs_str:
|
924 |
+
final_thought, final_answer = last_thought.split(
|
925 |
+
'[FinalAnswer]')
|
926 |
+
history.append(
|
927 |
+
ChatMessage(role="assistant",
|
928 |
+
content=final_thought.strip())
|
929 |
+
)
|
930 |
+
yield history
|
931 |
+
history.append(
|
932 |
+
ChatMessage(
|
933 |
+
role="assistant", content="**Answer**:\n"+final_answer.strip())
|
934 |
+
)
|
935 |
+
yield history
|
936 |
+
else:
|
937 |
+
return None
|