File size: 2,798 Bytes
f5e9a40
cba278b
 
 
 
 
 
 
 
16da4c9
cba278b
 
1e98784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cba278b
1e98784
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import gradio as gr
import torch
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQA
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from langchain_huggingface import HuggingFacePipeline

device = "cuda" if torch.cuda.is_available() else "cpu"

# Load and process the document
doc_loader = TextLoader("dataset.txt")
docs = doc_loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
split_docs = text_splitter.split_documents(docs)

# Create embeddings and vector store
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
vectordb = FAISS.from_documents(split_docs, embeddings)

# Load model and tokenizer
model_name = "01-ai/Yi-Coder-9B-Chat"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name, 
    device_map="auto", 
    torch_dtype=torch.float16 if device == "cuda" else torch.float32
)

# Set up the QA pipeline
qa_pipeline = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=750,
    pad_token_id=tokenizer.eos_token_id
)

llm = HuggingFacePipeline(pipeline=qa_pipeline)

# Set up the retriever and QA chain
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
qa_chain = RetrievalQA.from_chain_type(
    retriever=retriever,
    chain_type="stuff",
    llm=llm,
    return_source_documents=False
)

def preprocess_query(query):
    if "script" in query or "code" in query.lower():
        return f"Write a CPSL script: {query}"
    return query

def clean_response(response):
    result = response.get("result", "")
    if "Answer:" in result:
        return result.split("Answer:")[1].strip()
    return result.strip()

def chatbot_response(user_input):
    processed_query = preprocess_query(user_input)
    raw_response = qa_chain.invoke({"query": processed_query})
    return clean_response(raw_response)

# Gradio interface
with gr.Blocks() as chat_interface:
    gr.Markdown("# CPSL Chatbot")
    chat_history = gr.Chatbot(type='messages')
    user_input = gr.Textbox(label="Your Message:")
    send_button = gr.Button("Send")

    def interact(user_message, history):
        bot_reply = chatbot_response(user_message)
        history.append({"role": "user", "content": user_message})
        history.append({"role": "assistant", "content": bot_reply})
        return history, history

    send_button.click(interact, inputs=[user_input, chat_history], outputs=[chat_history, chat_history])

# Launch the interface
if __name__ == "__main__":
    chat_interface.launch()