Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,109 @@
|
|
1 |
-
import
|
2 |
-
import spaces
|
3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
-
zero = torch.tensor([0], device=device)
|
9 |
-
print(zero.device) # This should print 'cuda:0' if GPU is available
|
10 |
-
return f"Hello {zero + n} Tensor"
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
|
|
1 |
+
import os
|
|
|
2 |
import torch
|
3 |
+
import gradio as gr
|
4 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
5 |
+
from langchain_community.document_loaders import TextLoader
|
6 |
+
from langchain_community.vectorstores import FAISS
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
10 |
+
from langchain_huggingface import HuggingFacePipeline
|
11 |
+
|
12 |
+
# Detect device (GPU or CPU)
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
15 |
+
|
16 |
+
# β
Step 1: Check if dataset exists
|
17 |
+
DATASET_FILE = "dataset.txt"
|
18 |
+
if not os.path.exists(DATASET_FILE):
|
19 |
+
raise FileNotFoundError(f"β Error: '{DATASET_FILE}' not found. Please create and add some text.")
|
20 |
+
|
21 |
+
# β
Step 2: Load and split dataset
|
22 |
+
print("π Loading dataset...")
|
23 |
+
doc_loader = TextLoader(DATASET_FILE)
|
24 |
+
docs = doc_loader.load()
|
25 |
+
|
26 |
+
print("π Splitting documents...")
|
27 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
28 |
+
split_docs = text_splitter.split_documents(docs)
|
29 |
+
|
30 |
+
# β
Step 3: Initialize FAISS Vector Store
|
31 |
+
print("π§ Creating embeddings...")
|
32 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
33 |
+
|
34 |
+
print("π Creating FAISS Vector DB...")
|
35 |
+
vectordb = FAISS.from_documents(split_docs, embeddings)
|
36 |
+
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
|
37 |
+
|
38 |
+
# β
Step 4: Load Hugging Face Model
|
39 |
+
MODEL_NAME = "mistralai/Mistral-7B-Instruct" # More memory-efficient than Yi-Coder-9B
|
40 |
+
print(f"π Loading Model: {MODEL_NAME} on {device}...")
|
41 |
+
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
43 |
+
model = AutoModelForCausalLM.from_pretrained(
|
44 |
+
MODEL_NAME,
|
45 |
+
device_map="auto",
|
46 |
+
torch_dtype=torch_dtype,
|
47 |
+
)
|
48 |
+
|
49 |
+
# β
Step 5: Create QA Pipeline
|
50 |
+
print("π§ Setting up pipeline...")
|
51 |
+
qa_pipeline = pipeline(
|
52 |
+
"text-generation",
|
53 |
+
model=model,
|
54 |
+
tokenizer=tokenizer,
|
55 |
+
max_new_tokens=750,
|
56 |
+
pad_token_id=tokenizer.eos_token_id,
|
57 |
+
)
|
58 |
+
|
59 |
+
llm = HuggingFacePipeline(pipeline=qa_pipeline)
|
60 |
+
|
61 |
+
qa_chain = RetrievalQA.from_chain_type(
|
62 |
+
retriever=retriever,
|
63 |
+
chain_type="stuff",
|
64 |
+
llm=llm,
|
65 |
+
return_source_documents=False
|
66 |
+
)
|
67 |
+
|
68 |
+
# β
Step 6: Define Helper Functions
|
69 |
+
def preprocess_query(query):
|
70 |
+
"""Prepares query text based on type of request"""
|
71 |
+
if "script" in query.lower() or "code" in query.lower():
|
72 |
+
return f"Write a CPSL script: {query}"
|
73 |
+
return query
|
74 |
+
|
75 |
+
def clean_response(response):
|
76 |
+
"""Cleans and extracts the response from model output"""
|
77 |
+
result = response.get("result", "")
|
78 |
+
if "Answer:" in result:
|
79 |
+
return result.split("Answer:")[1].strip()
|
80 |
+
return result.strip()
|
81 |
+
|
82 |
+
def chatbot_response(user_input):
|
83 |
+
"""Processes user input and returns AI response"""
|
84 |
+
processed_query = preprocess_query(user_input)
|
85 |
+
raw_response = qa_chain.invoke({"query": processed_query})
|
86 |
+
return clean_response(raw_response)
|
87 |
+
|
88 |
+
# β
Step 7: Build Gradio UI
|
89 |
+
with gr.Blocks() as chat_interface:
|
90 |
+
gr.Markdown("# π€ CPSL Chatbot")
|
91 |
+
chat_history = gr.Chatbot(label="Chat History", height=300)
|
92 |
+
user_input = gr.Textbox(label="Your Message:")
|
93 |
+
send_button = gr.Button("Send")
|
94 |
+
clear_button = gr.Button("Clear")
|
95 |
+
|
96 |
+
def interact(user_message, history):
|
97 |
+
"""Handles user interaction and updates chat history"""
|
98 |
+
bot_reply = chatbot_response(user_message)
|
99 |
+
history.append(("π§βπ» You:", user_message))
|
100 |
+
history.append(("π€ Bot:", bot_reply))
|
101 |
+
return history, ""
|
102 |
|
103 |
+
send_button.click(interact, inputs=[user_input, chat_history], outputs=[chat_history, user_input])
|
104 |
+
clear_button.click(lambda: [], outputs=[chat_history])
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
# β
Step 8: Run Gradio App
|
107 |
+
if __name__ == "__main__":
|
108 |
+
print("π Launching CPSL Chatbot...")
|
109 |
+
chat_interface.launch(share=True) # share=True allows public link
|