Rajesh3338 commited on
Commit
f5e9a40
·
verified ·
1 Parent(s): 8658913

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +81 -74
app.py CHANGED
@@ -1,85 +1,92 @@
1
- import gradio as gr
 
 
2
  import torch
3
- from langchain_huggingface import HuggingFaceEmbeddings
4
- from langchain_community.document_loaders import TextLoader
5
- from langchain_community.vectorstores import FAISS
6
- from langchain.text_splitter import RecursiveCharacterTextSplitter
7
- from langchain.chains import RetrievalQA
8
- from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
9
- from langchain_huggingface import HuggingFacePipeline
10
-
11
- device = "cuda" if torch.cuda.is_available() else "cpu"
12
-
13
- # Load and process the document
14
- doc_loader = TextLoader("dataset.txt")
15
- docs = doc_loader.load()
16
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
17
- split_docs = text_splitter.split_documents(docs)
18
-
19
- # Create embeddings and vector store
20
- embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
21
- vectordb = FAISS.from_documents(split_docs, embeddings)
22
-
23
- # Load model and tokenizer
24
- model_name = "01-ai/Yi-Coder-9B-Chat"
25
- tokenizer = AutoTokenizer.from_pretrained(model_name)
26
- model = AutoModelForCausalLM.from_pretrained(
27
- model_name,
28
- device_map="auto",
29
- torch_dtype=torch.float16 if device == "cuda" else torch.float32
30
- )
31
 
32
- # Set up the QA pipeline
33
- qa_pipeline = pipeline(
34
- "text-generation",
35
- model=model,
36
- tokenizer=tokenizer,
37
- max_new_tokens=750,
38
- pad_token_id=tokenizer.eos_token_id
39
- )
40
 
41
- llm = HuggingFacePipeline(pipeline=qa_pipeline)
 
 
 
 
 
 
 
 
42
 
43
- # Set up the retriever and QA chain
44
- retriever = vectordb.as_retriever(search_kwargs={"k": 5})
45
- qa_chain = RetrievalQA.from_chain_type(
46
- retriever=retriever,
47
- chain_type="stuff",
48
- llm=llm,
49
- return_source_documents=False
50
- )
 
 
 
51
 
52
- def preprocess_query(query):
53
- if "script" in query or "code" in query.lower():
54
- return f"Write a CPSL script: {query}"
55
- return query
 
 
 
 
 
 
 
56
 
57
- def clean_response(response):
58
- result = response.get("result", "")
59
- if "Answer:" in result:
60
- return result.split("Answer:")[1].strip()
61
- return result.strip()
62
 
63
- def chatbot_response(user_input):
64
- processed_query = preprocess_query(user_input)
65
- raw_response = qa_chain.invoke({"query": processed_query})
66
- return clean_response(raw_response)
67
 
68
- # Gradio interface
69
- with gr.Blocks() as chat_interface:
70
- gr.Markdown("# CPSL Chatbot")
71
- chat_history = gr.Chatbot(type='messages')
72
- user_input = gr.Textbox(label="Your Message:")
73
- send_button = gr.Button("Send")
74
 
75
- def interact(user_message, history):
76
- bot_reply = chatbot_response(user_message)
77
- history.append({"role": "user", "content": user_message})
78
- history.append({"role": "assistant", "content": bot_reply})
79
- return history, history
 
 
 
 
 
 
 
80
 
81
- send_button.click(interact, inputs=[user_input, chat_history], outputs=[chat_history, chat_history])
82
 
83
- # Launch the interface
84
- if __name__ == "__main__":
85
- chat_interface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
2
+ from PIL import Image
3
+ import requests
4
  import torch
5
+ from threading import Thread
6
+ import gradio as gr
7
+ from gradio import FileData
8
+ import time
9
+ import spaces
10
+ ckpt = "mrcuddle/llama3.2-11B-Vision_instruct-Coder"
11
+ model = MllamaForConditionalGeneration.from_pretrained(ckpt,
12
+ torch_dtype=torch.bfloat16).to("cuda")
13
+ processor = AutoProcessor.from_pretrained(ckpt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
 
 
 
 
 
 
 
 
15
 
16
+ @spaces.GPU
17
+ def bot_streaming(message, history, max_new_tokens=250):
18
+
19
+ txt = message["text"]
20
+ ext_buffer = f"{txt}"
21
+
22
+ messages= []
23
+ images = []
24
+
25
 
26
+ for i, msg in enumerate(history):
27
+ if isinstance(msg[0], tuple):
28
+ messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
29
+ messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
30
+ images.append(Image.open(msg[0][0]).convert("RGB"))
31
+ elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
32
+ # messages are already handled
33
+ pass
34
+ elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn
35
+ messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
36
+ messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
37
 
38
+ # add current message
39
+ if len(message["files"]) == 1:
40
+
41
+ if isinstance(message["files"][0], str): # examples
42
+ image = Image.open(message["files"][0]).convert("RGB")
43
+ else: # regular input
44
+ image = Image.open(message["files"][0]["path"]).convert("RGB")
45
+ images.append(image)
46
+ messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
47
+ else:
48
+ messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
49
 
 
 
 
 
 
50
 
51
+ texts = processor.apply_chat_template(messages, add_generation_prompt=True)
 
 
 
52
 
53
+ if images == []:
54
+ inputs = processor(text=texts, return_tensors="pt").to("cuda")
55
+ else:
56
+ inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
57
+ streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
 
58
 
59
+ generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
60
+ generated_text = ""
61
+
62
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
63
+ thread.start()
64
+ buffer = ""
65
+
66
+ for new_text in streamer:
67
+ buffer += new_text
68
+ generated_text_without_prompt = buffer
69
+ time.sleep(0.01)
70
+ yield buffer
71
 
 
72
 
73
+ demo = gr.ChatInterface(fn=bot_streaming, title="Multimodal Llama",examples=[
74
+ [{"text": "Replicate this webpage using Tyepescript and ChakraUI.", "files":["./examples/Untitled.png"]},
75
+ 2000],
76
+ ],
77
+ textbox=gr.MultimodalTextbox(),
78
+ additional_inputs = [gr.Slider(
79
+ minimum=10,
80
+ maximum=2500,
81
+ value=500,
82
+ step=10,
83
+ label="Maximum number of new tokens to generate",
84
+ )
85
+ ],
86
+ cache_examples=False,
87
+ description="Yes, this space can replicate (to the model's best ability) a webpage in your preferred language.",
88
+ stop_btn="Stop Generation",
89
+ fill_height=True,
90
+ multimodal=True)
91
+
92
+ demo.launch(debug=True)