Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from langchain_huggingface import HuggingFaceEmbeddings
|
@@ -9,142 +8,78 @@ from langchain.chains import RetrievalQA
|
|
9 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
10 |
from langchain_huggingface import HuggingFacePipeline
|
11 |
|
12 |
-
# Configure GPU settings
|
13 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
-
print(f"Using device: {device}")
|
16 |
-
|
17 |
-
class CPSLChatbot:
|
18 |
-
def __init__(self):
|
19 |
-
self.initialize_components()
|
20 |
-
|
21 |
-
def initialize_components(self):
|
22 |
-
try:
|
23 |
-
# Load and process document
|
24 |
-
doc_loader = TextLoader("dataset.txt")
|
25 |
-
docs = doc_loader.load()
|
26 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
27 |
-
chunk_size=1000,
|
28 |
-
chunk_overlap=100
|
29 |
-
)
|
30 |
-
split_docs = text_splitter.split_documents(docs)
|
31 |
-
|
32 |
-
# Initialize embeddings and vector store
|
33 |
-
self.embeddings = HuggingFaceEmbeddings(
|
34 |
-
model_name="all-MiniLM-L6-v2",
|
35 |
-
model_kwargs={'device': device}
|
36 |
-
)
|
37 |
-
self.vectordb = FAISS.from_documents(split_docs, self.embeddings)
|
38 |
-
|
39 |
-
# Load model and tokenizer
|
40 |
-
model_name = "01-ai/Yi-Coder-9B-Chat"
|
41 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
42 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
43 |
-
model_name,
|
44 |
-
device_map="auto",
|
45 |
-
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
46 |
-
trust_remote_code=True
|
47 |
-
)
|
48 |
-
|
49 |
-
# Set up QA pipeline
|
50 |
-
self.qa_pipeline = pipeline(
|
51 |
-
"text-generation",
|
52 |
-
model=self.model,
|
53 |
-
tokenizer=self.tokenizer,
|
54 |
-
max_new_tokens=750,
|
55 |
-
pad_token_id=self.tokenizer.eos_token_id,
|
56 |
-
device=0 if device == "cuda" else -1
|
57 |
-
)
|
58 |
-
|
59 |
-
# Initialize LangChain components
|
60 |
-
llm = HuggingFacePipeline(pipeline=self.qa_pipeline)
|
61 |
-
retriever = self.vectordb.as_retriever(search_kwargs={"k": 5})
|
62 |
-
self.qa_chain = RetrievalQA.from_chain_type(
|
63 |
-
retriever=retriever,
|
64 |
-
chain_type="stuff",
|
65 |
-
llm=llm,
|
66 |
-
return_source_documents=False
|
67 |
-
)
|
68 |
-
print("Initialization completed successfully")
|
69 |
-
|
70 |
-
except Exception as e:
|
71 |
-
print(f"Initialization error: {str(e)}")
|
72 |
-
raise
|
73 |
-
|
74 |
-
def preprocess_query(self, query):
|
75 |
-
if "script" in query.lower() or "code" in query.lower():
|
76 |
-
return f"Write a CPSL script: {query}"
|
77 |
-
return query
|
78 |
-
|
79 |
-
def clean_response(self, response):
|
80 |
-
result = response.get("result", "")
|
81 |
-
if "Answer:" in result:
|
82 |
-
return result.split("Answer:")[1].strip()
|
83 |
-
return result.strip()
|
84 |
-
|
85 |
-
def get_response(self, user_input):
|
86 |
-
try:
|
87 |
-
processed_query = self.preprocess_query(user_input)
|
88 |
-
raw_response = self.qa_chain.invoke({"query": processed_query})
|
89 |
-
return self.clean_response(raw_response)
|
90 |
-
except Exception as e:
|
91 |
-
return f"Error processing query: {str(e)}"
|
92 |
-
|
93 |
-
def create_gradio_interface():
|
94 |
-
chatbot = CPSLChatbot()
|
95 |
-
|
96 |
-
with gr.Blocks(title="CPSL Chatbot") as chat_interface:
|
97 |
-
gr.Markdown("# CPSL Chatbot with GPU Support")
|
98 |
-
gr.Markdown("Using Yi-Coder-9B-Chat model for CPSL script generation and queries")
|
99 |
-
|
100 |
-
chat_history = gr.Chatbot(
|
101 |
-
value=[],
|
102 |
-
elem_id="chatbot",
|
103 |
-
height=600
|
104 |
-
)
|
105 |
-
|
106 |
-
with gr.Row():
|
107 |
-
user_input = gr.Textbox(
|
108 |
-
label="Your Message:",
|
109 |
-
placeholder="Type your message here...",
|
110 |
-
show_label=True,
|
111 |
-
elem_id="user-input"
|
112 |
-
)
|
113 |
-
send_button = gr.Button("Send", variant="primary")
|
114 |
-
|
115 |
-
def chat_response(user_message, history):
|
116 |
-
if not user_message:
|
117 |
-
return history, history
|
118 |
-
|
119 |
-
bot_response = chatbot.get_response(user_message)
|
120 |
-
history.append((user_message, bot_response))
|
121 |
-
return history, history
|
122 |
-
|
123 |
-
send_button.click(
|
124 |
-
chat_response,
|
125 |
-
inputs=[user_input, chat_history],
|
126 |
-
outputs=[chat_history, chat_history],
|
127 |
-
api_name="chat"
|
128 |
-
)
|
129 |
-
|
130 |
-
# Clear the input textbox after sending
|
131 |
-
send_button.click(lambda: "", None, user_input)
|
132 |
-
|
133 |
-
# Also allow Enter key to send message
|
134 |
-
user_input.submit(
|
135 |
-
chat_response,
|
136 |
-
inputs=[user_input, chat_history],
|
137 |
-
outputs=[chat_history, chat_history],
|
138 |
-
)
|
139 |
-
user_input.submit(lambda: "", None, user_input)
|
140 |
-
|
141 |
-
return chat_interface
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
if __name__ == "__main__":
|
144 |
-
|
145 |
-
interface.launch(
|
146 |
-
server_name="0.0.0.0",
|
147 |
-
server_port=7860,
|
148 |
-
share=True,
|
149 |
-
enable_queue=True
|
150 |
-
)
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from langchain_huggingface import HuggingFaceEmbeddings
|
|
|
8 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
9 |
from langchain_huggingface import HuggingFacePipeline
|
10 |
|
|
|
|
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
# Load and process the document
|
14 |
+
doc_loader = TextLoader("dataset.txt")
|
15 |
+
docs = doc_loader.load()
|
16 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
17 |
+
split_docs = text_splitter.split_documents(docs)
|
18 |
+
|
19 |
+
# Create embeddings and vector store
|
20 |
+
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
21 |
+
vectordb = FAISS.from_documents(split_docs, embeddings)
|
22 |
+
|
23 |
+
# Load model and tokenizer
|
24 |
+
model_name = "01-ai/Yi-Coder-9B-Chat"
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
26 |
+
model = AutoModelForCausalLM.from_pretrained(
|
27 |
+
model_name,
|
28 |
+
device_map="auto",
|
29 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32
|
30 |
+
)
|
31 |
+
|
32 |
+
# Set up the QA pipeline
|
33 |
+
qa_pipeline = pipeline(
|
34 |
+
"text-generation",
|
35 |
+
model=model,
|
36 |
+
tokenizer=tokenizer,
|
37 |
+
max_new_tokens=750,
|
38 |
+
pad_token_id=tokenizer.eos_token_id
|
39 |
+
)
|
40 |
+
|
41 |
+
llm = HuggingFacePipeline(pipeline=qa_pipeline)
|
42 |
+
|
43 |
+
# Set up the retriever and QA chain
|
44 |
+
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
|
45 |
+
qa_chain = RetrievalQA.from_chain_type(
|
46 |
+
retriever=retriever,
|
47 |
+
chain_type="stuff",
|
48 |
+
llm=llm,
|
49 |
+
return_source_documents=False
|
50 |
+
)
|
51 |
+
|
52 |
+
def preprocess_query(query):
|
53 |
+
if "script" in query or "code" in query.lower():
|
54 |
+
return f"Write a CPSL script: {query}"
|
55 |
+
return query
|
56 |
+
|
57 |
+
def clean_response(response):
|
58 |
+
result = response.get("result", "")
|
59 |
+
if "Answer:" in result:
|
60 |
+
return result.split("Answer:")[1].strip()
|
61 |
+
return result.strip()
|
62 |
+
|
63 |
+
def chatbot_response(user_input):
|
64 |
+
processed_query = preprocess_query(user_input)
|
65 |
+
raw_response = qa_chain.invoke({"query": processed_query})
|
66 |
+
return clean_response(raw_response)
|
67 |
+
|
68 |
+
# Gradio interface
|
69 |
+
with gr.Blocks() as chat_interface:
|
70 |
+
gr.Markdown("# CPSL Chatbot")
|
71 |
+
chat_history = gr.Chatbot(type='messages')
|
72 |
+
user_input = gr.Textbox(label="Your Message:")
|
73 |
+
send_button = gr.Button("Send")
|
74 |
+
|
75 |
+
def interact(user_message, history):
|
76 |
+
bot_reply = chatbot_response(user_message)
|
77 |
+
history.append({"role": "user", "content": user_message})
|
78 |
+
history.append({"role": "assistant", "content": bot_reply})
|
79 |
+
return history, history
|
80 |
+
|
81 |
+
send_button.click(interact, inputs=[user_input, chat_history], outputs=[chat_history, chat_history])
|
82 |
+
|
83 |
+
# Launch the interface
|
84 |
if __name__ == "__main__":
|
85 |
+
chat_interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|