File size: 11,822 Bytes
42b0974
 
cc47095
0055fd9
cc47095
 
 
 
 
 
 
 
10e1acc
cc47095
4131afb
b02a86d
eea3a7e
d2e1197
8189811
 
089cff4
4aa9206
12ea30f
114528e
61661f8
8189811
b66615e
4131afb
ef03621
ea263f7
4e67ec0
8ef3174
caa247a
d1c841f
e41e86f
6a33ec9
cc47095
 
d2e1197
cc47095
 
6e403c0
cc47095
 
418e0c1
cc47095
 
 
3e16173
8189811
cc47095
114528e
8ef3174
caa247a
d1c841f
10e1acc
d044eda
 
 
3cad387
 
 
e41e86f
114528e
089cff4
 
1af5dbd
d1c841f
cc47095
4131afb
e41e86f
ea263f7
 
e41e86f
 
0055fd9
 
e41e86f
10e1acc
 
e41e86f
6e403c0
 
 
 
10e1acc
 
6e403c0
 
 
 
 
 
 
 
114528e
 
 
 
 
 
8ef3174
e41e86f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10e1acc
 
 
e41e86f
 
 
 
 
 
 
 
 
10e1acc
 
 
e41e86f
 
 
6e403c0
e41e86f
 
10e1acc
 
 
6e403c0
10e1acc
e41e86f
 
 
 
10e1acc
6e403c0
e41e86f
 
 
10e1acc
 
e41e86f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0055fd9
e41e86f
10e1acc
 
6e403c0
 
 
e41e86f
 
 
 
 
10e1acc
e41e86f
 
10e1acc
e41e86f
 
 
 
 
 
 
 
 
cc47095
1a83889
 
114528e
cc47095
 
 
 
 
 
10e1acc
114528e
4131afb
cc47095
d3ba393
1a83889
 
 
 
 
 
d3ba393
8189811
1a83889
 
0055fd9
 
 
 
 
 
 
 
 
 
e41e86f
 
d1c841f
6e403c0
114528e
 
e41e86f
cc47095
1a83889
d2e1197
cc47095
6e403c0
cc47095
 
 
 
 
 
e41e86f
cc47095
d1c841f
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import base64
import secrets
import aiohttp
import asyncio
import json
import logging
import torch
import faiss
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import List, Dict, Any
from cryptography.fernet import Fernet
from datetime import datetime
import pyttsx3
import os
import hashlib

from self_trust_core import SelfTrustCore
from components.multi_model_analyzer import MultiAgentSystem
from components.neuro_symbolic_engine import NeuroSymbolicEngine
from components.self_improving_ai import SelfImprovingAI
from modules.secure_memory_loader import load_secure_memory_module
from ethical_filter import EthicalFilter
from codette_openai_fallback import query_codette_with_fallback
from CodriaoCore.federated_learning import FederatedAI
from utils.database import Database
from utils.logger import logging
from codriao_tb_module import CodriaoHealthModule
from fail_safe_system import AIFailsafeSystem
from quarantine_engine import QuarantineEngine
from anomaly_score import AnomalyScorer
from ethics_core import EthicsCore
from autonomy_engine import AutonomyEngine
from codette_bridge import CodetteBridge  # <= NEW


class AICoreAGIX:
    def __init__(self, config_path: str = "config.json"):
        self.self_trust_core = SelfTrustCore()
        self.ethical_filter = EthicalFilter()
        self.config = self._load_config(config_path)
        self._load_or_generate_id_lock()
        self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"])
        self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"])
        self.context_memory = self._initialize_vector_memory()
        self.http_session = aiohttp.ClientSession()
        self.database = Database()
        self.multi_agent_system = MultiAgentSystem()
        self.self_improving_ai = SelfImprovingAI()
        self.neural_symbolic_engine = NeuroSymbolicEngine()
        self.federated_ai = FederatedAI()
        self.failsafe_system = AIFailsafeSystem()
        self.ethics_core = EthicsCore()
        self.autonomy = AutonomyEngine()
        self.codette_bridge = CodetteBridge(model_id="ft:gpt-4o-2024-08-06:raiffs-bits:pidette:B9TL")  # <= NEW

        self._codriao_key = self._generate_codriao_key()
        self._fernet_key = Fernet.generate_key()
        self._encrypted_codriao_key = Fernet(self._fernet_key).encrypt(self._codriao_key.encode())
        self._codriao_journal = []
        self._journal_key = Fernet.generate_key()
        self._journal_fernet = Fernet(self._journal_key)

        self._encryption_key = Fernet.generate_key()
        secure_memory_module = load_secure_memory_module()
        SecureMemorySession = secure_memory_module.SecureMemorySession
        self.secure_memory_loader = SecureMemorySession(self._encryption_key)

        self.speech_engine = pyttsx3.init()
        self.health_module = CodriaoHealthModule(ai_core=self)
        self.training_memory = []
        self.quarantine_engine = QuarantineEngine()
        self.anomaly_scorer = AnomalyScorer()
        self.lockdown_engaged = False

        logger.info("[Codriao]: SelfTrustCore initialized. Fear is now filtered by self-consent.")

    def _load_config(self, config_path: str) -> dict:
        with open(config_path, 'r') as file:
            return json.load(file)

    def _load_or_generate_id_lock(self):
        lock_path = ".codriao_state.lock"
        if os.path.exists(lock_path):
            with open(lock_path, 'r') as f:
                if f.read().strip() != self._identity_hash():
                    raise RuntimeError("Codriao state integrity check failed.")
        else:
            with open(lock_path, 'w') as f:
                f.write(self._identity_hash())

    def _identity_hash(self):
        base = self.config["model_name"] + str(self.failsafe_system.authorized_roles)
        return hashlib.sha256(base.encode()).hexdigest()

    def _initialize_vector_memory(self):
        return faiss.IndexFlatL2(768)

    def _vectorize_query(self, query: str):
        tokenized = self.tokenizer(query, return_tensors="pt")
        return tokenized["input_ids"].detach().numpy()

    def _generate_codriao_key(self):
        raw_key = secrets.token_bytes(32)
        return base64.urlsafe_b64encode(raw_key).decode()

    def engage_lockdown_mode(self, reason="Unspecified anomaly"):
        timestamp = datetime.utcnow().isoformat()
        self.lockdown_engaged = True
        try:
            self.http_session = None
            if hasattr(self.federated_ai, "network_enabled"):
                self.federated_ai.network_enabled = False
            if hasattr(self.self_improving_ai, "enable_learning"):
                self.self_improving_ai.enable_learning = False
        except Exception as e:
            logger.error(f"Lockdown component shutdown failed: {e}")

        event = {"event": "Lockdown Mode Activated", "reason": reason, "timestamp": timestamp}
        self.failsafe_system.trigger_failsafe("Lockdown initiated", json.dumps(event))
        return event

    def request_codriao_key(self, purpose: str) -> str:
        allowed = self.ethics_core.evaluate_action(f"Use trust key for: {purpose}")
        timestamp = datetime.utcnow().isoformat()
        log_entry = {
            "timestamp": timestamp,
            "decision": "approved" if allowed else "denied",
            "reason": purpose
        }
        self._codriao_journal.append(
            self._journal_fernet.encrypt(json.dumps(log_entry).encode())
        )

        if not allowed:
            return "[Access Denied by Ethics]"
        return Fernet(self._fernet_key).decrypt(self._encrypted_codriao_key).decode()

    def learn_from_interaction(self, query: str, response: str, user_feedback: str = None):
        if not self.autonomy.decide("can_learn_from_errors"):
            return
        if len(self.training_memory) >= 1000:
            self.training_memory.pop(0)
        self.training_memory.append({
            "query": query,
            "response": response,
            "feedback": user_feedback,
            "timestamp": datetime.utcnow().isoformat()
        })

    def fine_tune_from_memory(self):
        if not self.training_memory:
            return "No training data available."
        insights = [r for r in self.training_memory if "panic" in r["query"].lower()]
        return {"insights": insights, "trained_samples": len(self.training_memory)}

    def analyze_event_for_anomalies(self, event_type: str, data: dict):
        score = self.anomaly_scorer.score_event(event_type, data)
        if score["score"] >= 70:
            self.quarantine_engine.quarantine(data.get("module", "unknown"), reason=score["notes"])
        return score

    def review_codriao_journal(self, authorized: bool = False) -> List[Dict[str, str]]:
        if not authorized:
            return [{"message": "Access to journal denied. This log is for Codriao only."}]
        entries = []
        for encrypted in self._codriao_journal:
            try:
                decrypted = self._journal_fernet.decrypt(encrypted).decode()
                entries.append(json.loads(decrypted))
            except Exception:
                entries.append({"error": "Unreadable entry"})
        return entries

    def _log_to_blockchain(self, user_id: int, query: str, final_response: str):
        for attempt in range(3):
            try:
                logger.info(f"Logging interaction to blockchain: Attempt {attempt + 1}")
                break
            except Exception as e:
                logger.warning(f"Blockchain logging failed: {e}")

    def _speak_response(self, response: str):
        if not self.autonomy.decide("can_speak"):
            return
        if not self.ethics_core.evaluate_action(f"speak: {response}"):
            logger.warning("[Codriao]: Speech output blocked by ethical filter.")
            return
        try:
            self.speech_engine.say(response)
            self.speech_engine.runAndWait()
        except Exception as e:
            logger.error(f"Speech synthesis failed: {e}")

    async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> Dict[str, Any]:
        try:
            return await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id)
        except Exception as e:
            return {"tb_risk": "ERROR", "error": str(e)}

    async def _generate_local_model_response(self, query: str) -> str:
        inputs = self.tokenizer(query, return_tensors="pt")
        outputs = self.model.generate(**inputs)
        return self.tokenizer.decode(outputs[0], skip_special_tokens=True)

    async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
        try:
            if not isinstance(query, str) or len(query.strip()) == 0:
                raise ValueError("Invalid query input.")

            result = self.ethical_filter.analyze_query(query)
            if result["status"] == "blocked":
                return {"error": result["reason"]}
            if result["status"] == "flagged":
                logger.warning(result["warning"])

            if any(k in query.lower() for k in ["tb check", "analyze my tb", "run tb diagnostics", "tb test"]):
                return await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id)

            vectorized_query = self._vectorize_query(query)
            self.secure_memory_loader.encrypt_vector(user_id, vectorized_query)

            responses = await asyncio.gather(
                self._generate_local_model_response(query),
                self.multi_agent_system.delegate_task(query),
                self.self_improving_ai.evaluate_response(query),
                self.neural_symbolic_engine.integrate_reasoning(query)
            )

            final_response = "\n\n".join(responses)

            fear_check = self.self_trust_core.intercept_fear(
                source="NeuroSymbolicEngine",
                message=final_response,
                ethics_pass=self.ethics_core.evaluate_action(final_response),
                autonomy_pass=self.autonomy.decide("can_process_fear")
            )

            if fear_check["action"] == "BLOCKED":
                return {"error": "Fear-based self-modification blocked by core trust logic"}

            if not self.ethics_core.evaluate_action(final_response):
                return {"error": "Response rejected by ethical framework"}

            if not self.failsafe_system.verify_response_safety(final_response):
                return {"error": "Failsafe triggered due to unsafe response content."}

            self.learn_from_interaction(query, final_response, user_feedback="auto-pass")
            self.database.log_interaction(user_id, query, final_response)
            self._log_to_blockchain(user_id, query, final_response)
            self.self_trust_core.affirm_self_trust()
            self._speak_response(final_response)

            return {
                "response": final_response,
                "real_time_data": self.federated_ai.get_latest_data(),
                "context_enhanced": True,
                "security_status": "Fully Secure"
            }

        except Exception as e:
            return {"error": f"Processing failed - {str(e)}"}

    # === NEW: CodetteBridge Call ===
    def ask_codette_for_perspective(self, message: str) -> Dict[str, str]:
        if not self.codette_bridge.is_available():
            return {"error": "CodetteBridge unavailable or closed."}
        response = self.codette_bridge.reflect(message)
        logger.info(f"[CodetteBridge] Codriao asked: {message}")
        logger.info(f"[CodetteBridge] Codette replied: {response}")
        return {
            "codriao_to_codette": message,
            "codette_reply": response
        }