Spaces:
Runtime error
Runtime error
Create codrioagix
Browse files- codrioagix +104 -0
codrioagix
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import aiohttp
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import torch
|
5 |
+
import faiss
|
6 |
+
import numpy as np
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
+
from typing import List, Dict, Any
|
9 |
+
from cryptography.fernet import Fernet
|
10 |
+
from jwt import encode, decode, ExpiredSignatureError
|
11 |
+
from datetime import datetime, timedelta
|
12 |
+
import blockchain_module
|
13 |
+
import speech_recognition as sr
|
14 |
+
import pyttsx3
|
15 |
+
from ethical_filter import EthicalFilter
|
16 |
+
|
17 |
+
from components.agix_reflection import SelfReflectiveAI
|
18 |
+
from components.multi_agent import MultiAgentSystem
|
19 |
+
from components.ar_integration import ARDataOverlay
|
20 |
+
from components.neural_symbolic import NeuralSymbolicProcessor
|
21 |
+
from components.federated_learning import FederatedAI
|
22 |
+
from utils.database import Database
|
23 |
+
from utils.logger import logger
|
24 |
+
|
25 |
+
|
26 |
+
class AICoreAGIX:
|
27 |
+
def __init__(self, config_path: str = "config.json"):
|
28 |
+
self.ethical_filter = EthicalFilter()
|
29 |
+
self.config = self._load_config(config_path)
|
30 |
+
self.models = self._initialize_models()
|
31 |
+
self.context_memory = self._initialize_vector_memory()
|
32 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"])
|
33 |
+
self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"])
|
34 |
+
self.http_session = aiohttp.ClientSession()
|
35 |
+
self.database = Database()
|
36 |
+
self.multi_agent_system = MultiAgentSystem()
|
37 |
+
self.self_reflective_ai = SelfReflectiveAI()
|
38 |
+
self.ar_overlay = ARDataOverlay()
|
39 |
+
self.neural_symbolic_processor = NeuralSymbolicProcessor()
|
40 |
+
self.federated_ai = FederatedAI()
|
41 |
+
self._encryption_key = Fernet.generate_key()
|
42 |
+
self.jwt_secret = "your_jwt_secret_key"
|
43 |
+
self.speech_engine = pyttsx3.init()
|
44 |
+
|
45 |
+
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
|
46 |
+
try:
|
47 |
+
# Ethical Safety Check
|
48 |
+
result = self.ethical_filter.analyze_query(query)
|
49 |
+
if result["status"] == "blocked":
|
50 |
+
return {"error": result["reason"]}
|
51 |
+
if result["status"] == "flagged":
|
52 |
+
logger.warning(result["warning"])
|
53 |
+
|
54 |
+
# Continue with safe processing
|
55 |
+
vectorized_query = self._vectorize_query(query)
|
56 |
+
self.context_memory.add(np.array([vectorized_query]))
|
57 |
+
|
58 |
+
model_response = await self._generate_local_model_response(query)
|
59 |
+
agent_response = self.multi_agent_system.delegate_task(query)
|
60 |
+
self_reflection = self.self_reflective_ai.evaluate_response(query, model_response)
|
61 |
+
ar_data = self.ar_overlay.fetch_augmented_data(query)
|
62 |
+
neural_reasoning = self.neural_symbolic_processor.process_query(query)
|
63 |
+
|
64 |
+
final_response = f"{model_response}\n\n{agent_response}\n\n{self_reflection}\n\nAR Insights: {ar_data}\n\nLogic: {neural_reasoning}"
|
65 |
+
self.database.log_interaction(user_id, query, final_response)
|
66 |
+
blockchain_module.store_interaction(user_id, query, final_response)
|
67 |
+
self._speak_response(final_response)
|
68 |
+
|
69 |
+
return {
|
70 |
+
"response": final_response,
|
71 |
+
"real_time_data": self.federated_ai.get_latest_data(),
|
72 |
+
"context_enhanced": True,
|
73 |
+
"security_status": "Fully Secure"
|
74 |
+
}
|
75 |
+
|
76 |
+
except Exception as e:
|
77 |
+
logger.error(f"Response generation failed: {e}")
|
78 |
+
return {"error": "Processing failed - safety protocols engaged"}
|
79 |
+
|
80 |
+
def _load_config(self, config_path: str) -> dict:
|
81 |
+
with open(config_path, 'r') as file:
|
82 |
+
return json.load(file)
|
83 |
+
|
84 |
+
def _initialize_models(self):
|
85 |
+
return {
|
86 |
+
"agix_model": AutoModelForCausalLM.from_pretrained(self.config["model_name"]),
|
87 |
+
"tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"])
|
88 |
+
}
|
89 |
+
|
90 |
+
def _initialize_vector_memory(self):
|
91 |
+
return faiss.IndexFlatL2(768)
|
92 |
+
|
93 |
+
def _vectorize_query(self, query: str):
|
94 |
+
tokenized = self.tokenizer(query, return_tensors="pt")
|
95 |
+
return tokenized["input_ids"].detach().numpy()
|
96 |
+
|
97 |
+
async def _generate_local_model_response(self, query: str) -> str:
|
98 |
+
inputs = self.tokenizer(query, return_tensors="pt")
|
99 |
+
outputs = self.model.generate(**inputs)
|
100 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
101 |
+
|
102 |
+
def _speak_response(self, response: str):
|
103 |
+
self.speech_engine.say(response)
|
104 |
+
self.speech_engine.runAndWait()
|