Raiff1982 commited on
Commit
cc47095
·
verified ·
1 Parent(s): e488053

Create codrioagix

Browse files
Files changed (1) hide show
  1. codrioagix +104 -0
codrioagix ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import aiohttp
2
+ import json
3
+ import logging
4
+ import torch
5
+ import faiss
6
+ import numpy as np
7
+ from transformers import AutoModelForCausalLM, AutoTokenizer
8
+ from typing import List, Dict, Any
9
+ from cryptography.fernet import Fernet
10
+ from jwt import encode, decode, ExpiredSignatureError
11
+ from datetime import datetime, timedelta
12
+ import blockchain_module
13
+ import speech_recognition as sr
14
+ import pyttsx3
15
+ from ethical_filter import EthicalFilter
16
+
17
+ from components.agix_reflection import SelfReflectiveAI
18
+ from components.multi_agent import MultiAgentSystem
19
+ from components.ar_integration import ARDataOverlay
20
+ from components.neural_symbolic import NeuralSymbolicProcessor
21
+ from components.federated_learning import FederatedAI
22
+ from utils.database import Database
23
+ from utils.logger import logger
24
+
25
+
26
+ class AICoreAGIX:
27
+ def __init__(self, config_path: str = "config.json"):
28
+ self.ethical_filter = EthicalFilter()
29
+ self.config = self._load_config(config_path)
30
+ self.models = self._initialize_models()
31
+ self.context_memory = self._initialize_vector_memory()
32
+ self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"])
33
+ self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"])
34
+ self.http_session = aiohttp.ClientSession()
35
+ self.database = Database()
36
+ self.multi_agent_system = MultiAgentSystem()
37
+ self.self_reflective_ai = SelfReflectiveAI()
38
+ self.ar_overlay = ARDataOverlay()
39
+ self.neural_symbolic_processor = NeuralSymbolicProcessor()
40
+ self.federated_ai = FederatedAI()
41
+ self._encryption_key = Fernet.generate_key()
42
+ self.jwt_secret = "your_jwt_secret_key"
43
+ self.speech_engine = pyttsx3.init()
44
+
45
+ async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
46
+ try:
47
+ # Ethical Safety Check
48
+ result = self.ethical_filter.analyze_query(query)
49
+ if result["status"] == "blocked":
50
+ return {"error": result["reason"]}
51
+ if result["status"] == "flagged":
52
+ logger.warning(result["warning"])
53
+
54
+ # Continue with safe processing
55
+ vectorized_query = self._vectorize_query(query)
56
+ self.context_memory.add(np.array([vectorized_query]))
57
+
58
+ model_response = await self._generate_local_model_response(query)
59
+ agent_response = self.multi_agent_system.delegate_task(query)
60
+ self_reflection = self.self_reflective_ai.evaluate_response(query, model_response)
61
+ ar_data = self.ar_overlay.fetch_augmented_data(query)
62
+ neural_reasoning = self.neural_symbolic_processor.process_query(query)
63
+
64
+ final_response = f"{model_response}\n\n{agent_response}\n\n{self_reflection}\n\nAR Insights: {ar_data}\n\nLogic: {neural_reasoning}"
65
+ self.database.log_interaction(user_id, query, final_response)
66
+ blockchain_module.store_interaction(user_id, query, final_response)
67
+ self._speak_response(final_response)
68
+
69
+ return {
70
+ "response": final_response,
71
+ "real_time_data": self.federated_ai.get_latest_data(),
72
+ "context_enhanced": True,
73
+ "security_status": "Fully Secure"
74
+ }
75
+
76
+ except Exception as e:
77
+ logger.error(f"Response generation failed: {e}")
78
+ return {"error": "Processing failed - safety protocols engaged"}
79
+
80
+ def _load_config(self, config_path: str) -> dict:
81
+ with open(config_path, 'r') as file:
82
+ return json.load(file)
83
+
84
+ def _initialize_models(self):
85
+ return {
86
+ "agix_model": AutoModelForCausalLM.from_pretrained(self.config["model_name"]),
87
+ "tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"])
88
+ }
89
+
90
+ def _initialize_vector_memory(self):
91
+ return faiss.IndexFlatL2(768)
92
+
93
+ def _vectorize_query(self, query: str):
94
+ tokenized = self.tokenizer(query, return_tensors="pt")
95
+ return tokenized["input_ids"].detach().numpy()
96
+
97
+ async def _generate_local_model_response(self, query: str) -> str:
98
+ inputs = self.tokenizer(query, return_tensors="pt")
99
+ outputs = self.model.generate(**inputs)
100
+ return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
101
+
102
+ def _speak_response(self, response: str):
103
+ self.speech_engine.say(response)
104
+ self.speech_engine.runAndWait()