Raiff1982 commited on
Commit
418e0c1
·
verified ·
1 Parent(s): fbb3fd4

Update AICoreAGIX_with_TB.py

Browse files
Files changed (1) hide show
  1. AICoreAGIX_with_TB.py +9 -32
AICoreAGIX_with_TB.py CHANGED
@@ -13,29 +13,26 @@ import speech_recognition as sr
13
  import pyttsx3
14
  import os
15
 
16
- # === Corrected Local Imports ===
17
- # === Corrected Local Imports ===
18
  from components.multi_model_analyzer import MultiAgentSystem
19
  from components.neuro_symbolic_engine import NeuroSymbolicEngine
20
  from components.self_improving_ai import SelfImprovingAI
21
  from modules.secure_memory_loader import load_secure_memory_module
22
  from ethical_filter import EthicalFilter
 
23
 
24
- # === External Modules (you must ensure these exist) ===
25
  from CodriaoCore.federated_learning import FederatedAI
26
  from utils.database import Database
27
  from utils.logger import logger
28
  from codriao_tb_module import CodriaoHealthModule
29
 
30
- # === Init
31
  class AICoreAGIX:
32
  def __init__(self, config_path: str = "config.json"):
33
  self.ethical_filter = EthicalFilter()
34
  self.config = self._load_config(config_path)
35
- self.models = self._initialize_models()
36
- self.context_memory = self._initialize_vector_memory()
37
  self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"])
38
  self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"])
 
39
  self.http_session = aiohttp.ClientSession()
40
  self.database = Database()
41
  self.multi_agent_system = MultiAgentSystem()
@@ -44,6 +41,7 @@ class AICoreAGIX:
44
  self.federated_ai = FederatedAI()
45
 
46
  # Secure memory setup
 
47
  secure_memory_module = load_secure_memory_module()
48
  SecureMemorySession = secure_memory_module.SecureMemorySession
49
  self.secure_memory_loader = SecureMemorySession(self._encryption_key)
@@ -53,14 +51,12 @@ class AICoreAGIX:
53
 
54
  async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
55
  try:
56
- # Ethical Safety Check
57
  result = self.ethical_filter.analyze_query(query)
58
  if result["status"] == "blocked":
59
  return {"error": result["reason"]}
60
  if result["status"] == "flagged":
61
  logger.warning(result["warning"])
62
 
63
- # Check if user explicitly requests TB analysis
64
  if any(phrase in query.lower() for phrase in ["tb check", "analyze my tb", "run tb diagnostics", "tb test"]):
65
  result = await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id)
66
  return {
@@ -72,21 +68,15 @@ class AICoreAGIX:
72
  "system_health": result["system_health"]
73
  }
74
 
75
- # Vectorize and encrypt
76
  vectorized_query = self._vectorize_query(query)
77
  self.secure_memory_loader.encrypt_vector(user_id, vectorized_query)
78
-
79
- # (Optional) retrieve memory
80
  user_vectors = self.secure_memory_loader.decrypt_vectors(user_id)
81
 
82
- # Main AI processing
83
- # Main AI processing using OpenAI fine-tuned model
84
- model_response = query_codette_openai(query)
85
-
86
- # Continue normal processing
87
- agent_response = self.multi_agent_system.delegate_task(query)
88
- self_reflection = self.self_improving_ai.evaluate_response(query, model_response)
89
- neural_reasoning = self.neural_symbolic_engine.integrate_reasoning(query)
90
 
91
  final_response = (
92
  f"{model_response}\n\n"
@@ -96,7 +86,6 @@ neural_reasoning = self.neural_symbolic_engine.integrate_reasoning(query)
96
  )
97
 
98
  self.database.log_interaction(user_id, query, final_response)
99
- # blockchain_module.store_interaction(user_id, query, final_response)
100
  self._speak_response(final_response)
101
 
102
  return {
@@ -111,7 +100,6 @@ neural_reasoning = self.neural_symbolic_engine.integrate_reasoning(query)
111
  return {"error": "Processing failed - safety protocols engaged"}
112
 
113
  async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> Dict[str, Any]:
114
- """Only runs TB analysis if explicitly requested."""
115
  try:
116
  result = await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id)
117
  logger.info(f"TB Diagnostic Result: {result}")
@@ -132,12 +120,6 @@ neural_reasoning = self.neural_symbolic_engine.integrate_reasoning(query)
132
  with open(config_path, 'r') as file:
133
  return json.load(file)
134
 
135
- def _initialize_models(self):
136
- return {
137
- "agix_model": AutoModelForCausalLM.from_pretrained(self.config["model_name"]),
138
- "tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"])
139
- }
140
-
141
  def _initialize_vector_memory(self):
142
  return faiss.IndexFlatL2(768)
143
 
@@ -145,11 +127,6 @@ neural_reasoning = self.neural_symbolic_engine.integrate_reasoning(query)
145
  tokenized = self.tokenizer(query, return_tensors="pt")
146
  return tokenized["input_ids"].detach().numpy()
147
 
148
- async def _generate_local_model_response(self, query: str) -> str:
149
- inputs = self.tokenizer(query, return_tensors="pt")
150
- outputs = self.model.generate(**inputs)
151
- return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
152
-
153
  def _speak_response(self, response: str):
154
  self.speech_engine.say(response)
155
  self.speech_engine.runAndWait()
 
13
  import pyttsx3
14
  import os
15
 
 
 
16
  from components.multi_model_analyzer import MultiAgentSystem
17
  from components.neuro_symbolic_engine import NeuroSymbolicEngine
18
  from components.self_improving_ai import SelfImprovingAI
19
  from modules.secure_memory_loader import load_secure_memory_module
20
  from ethical_filter import EthicalFilter
21
+ from codette_openai_fallback import query_codette_with_fallback # <<< Fallback-aware
22
 
 
23
  from CodriaoCore.federated_learning import FederatedAI
24
  from utils.database import Database
25
  from utils.logger import logger
26
  from codriao_tb_module import CodriaoHealthModule
27
 
28
+
29
  class AICoreAGIX:
30
  def __init__(self, config_path: str = "config.json"):
31
  self.ethical_filter = EthicalFilter()
32
  self.config = self._load_config(config_path)
 
 
33
  self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"])
34
  self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"])
35
+ self.context_memory = self._initialize_vector_memory()
36
  self.http_session = aiohttp.ClientSession()
37
  self.database = Database()
38
  self.multi_agent_system = MultiAgentSystem()
 
41
  self.federated_ai = FederatedAI()
42
 
43
  # Secure memory setup
44
+ self._encryption_key = self.config["security_settings"]["encryption_key"].encode()
45
  secure_memory_module = load_secure_memory_module()
46
  SecureMemorySession = secure_memory_module.SecureMemorySession
47
  self.secure_memory_loader = SecureMemorySession(self._encryption_key)
 
51
 
52
  async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
53
  try:
 
54
  result = self.ethical_filter.analyze_query(query)
55
  if result["status"] == "blocked":
56
  return {"error": result["reason"]}
57
  if result["status"] == "flagged":
58
  logger.warning(result["warning"])
59
 
 
60
  if any(phrase in query.lower() for phrase in ["tb check", "analyze my tb", "run tb diagnostics", "tb test"]):
61
  result = await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id)
62
  return {
 
68
  "system_health": result["system_health"]
69
  }
70
 
 
71
  vectorized_query = self._vectorize_query(query)
72
  self.secure_memory_loader.encrypt_vector(user_id, vectorized_query)
 
 
73
  user_vectors = self.secure_memory_loader.decrypt_vectors(user_id)
74
 
75
+ # === Use OpenAI w/ fallback ===
76
+ model_response = query_codette_with_fallback(query, user_id=str(user_id))
77
+ agent_response = self.multi_agent_system.delegate_task(query)
78
+ self_reflection = self.self_improving_ai.evaluate_response(query, model_response)
79
+ neural_reasoning = self.neural_symbolic_engine.integrate_reasoning(query)
 
 
 
80
 
81
  final_response = (
82
  f"{model_response}\n\n"
 
86
  )
87
 
88
  self.database.log_interaction(user_id, query, final_response)
 
89
  self._speak_response(final_response)
90
 
91
  return {
 
100
  return {"error": "Processing failed - safety protocols engaged"}
101
 
102
  async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> Dict[str, Any]:
 
103
  try:
104
  result = await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id)
105
  logger.info(f"TB Diagnostic Result: {result}")
 
120
  with open(config_path, 'r') as file:
121
  return json.load(file)
122
 
 
 
 
 
 
 
123
  def _initialize_vector_memory(self):
124
  return faiss.IndexFlatL2(768)
125
 
 
127
  tokenized = self.tokenizer(query, return_tensors="pt")
128
  return tokenized["input_ids"].detach().numpy()
129
 
 
 
 
 
 
130
  def _speak_response(self, response: str):
131
  self.speech_engine.say(response)
132
  self.speech_engine.runAndWait()