Spaces:
Runtime error
Runtime error
Update AICoreAGIX_with_TB.py
Browse files- AICoreAGIX_with_TB.py +9 -32
AICoreAGIX_with_TB.py
CHANGED
@@ -13,29 +13,26 @@ import speech_recognition as sr
|
|
13 |
import pyttsx3
|
14 |
import os
|
15 |
|
16 |
-
# === Corrected Local Imports ===
|
17 |
-
# === Corrected Local Imports ===
|
18 |
from components.multi_model_analyzer import MultiAgentSystem
|
19 |
from components.neuro_symbolic_engine import NeuroSymbolicEngine
|
20 |
from components.self_improving_ai import SelfImprovingAI
|
21 |
from modules.secure_memory_loader import load_secure_memory_module
|
22 |
from ethical_filter import EthicalFilter
|
|
|
23 |
|
24 |
-
# === External Modules (you must ensure these exist) ===
|
25 |
from CodriaoCore.federated_learning import FederatedAI
|
26 |
from utils.database import Database
|
27 |
from utils.logger import logger
|
28 |
from codriao_tb_module import CodriaoHealthModule
|
29 |
|
30 |
-
|
31 |
class AICoreAGIX:
|
32 |
def __init__(self, config_path: str = "config.json"):
|
33 |
self.ethical_filter = EthicalFilter()
|
34 |
self.config = self._load_config(config_path)
|
35 |
-
self.models = self._initialize_models()
|
36 |
-
self.context_memory = self._initialize_vector_memory()
|
37 |
self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"])
|
38 |
self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"])
|
|
|
39 |
self.http_session = aiohttp.ClientSession()
|
40 |
self.database = Database()
|
41 |
self.multi_agent_system = MultiAgentSystem()
|
@@ -44,6 +41,7 @@ class AICoreAGIX:
|
|
44 |
self.federated_ai = FederatedAI()
|
45 |
|
46 |
# Secure memory setup
|
|
|
47 |
secure_memory_module = load_secure_memory_module()
|
48 |
SecureMemorySession = secure_memory_module.SecureMemorySession
|
49 |
self.secure_memory_loader = SecureMemorySession(self._encryption_key)
|
@@ -53,14 +51,12 @@ class AICoreAGIX:
|
|
53 |
|
54 |
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
|
55 |
try:
|
56 |
-
# Ethical Safety Check
|
57 |
result = self.ethical_filter.analyze_query(query)
|
58 |
if result["status"] == "blocked":
|
59 |
return {"error": result["reason"]}
|
60 |
if result["status"] == "flagged":
|
61 |
logger.warning(result["warning"])
|
62 |
|
63 |
-
# Check if user explicitly requests TB analysis
|
64 |
if any(phrase in query.lower() for phrase in ["tb check", "analyze my tb", "run tb diagnostics", "tb test"]):
|
65 |
result = await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id)
|
66 |
return {
|
@@ -72,21 +68,15 @@ class AICoreAGIX:
|
|
72 |
"system_health": result["system_health"]
|
73 |
}
|
74 |
|
75 |
-
# Vectorize and encrypt
|
76 |
vectorized_query = self._vectorize_query(query)
|
77 |
self.secure_memory_loader.encrypt_vector(user_id, vectorized_query)
|
78 |
-
|
79 |
-
# (Optional) retrieve memory
|
80 |
user_vectors = self.secure_memory_loader.decrypt_vectors(user_id)
|
81 |
|
82 |
-
#
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
agent_response = self.multi_agent_system.delegate_task(query)
|
88 |
-
self_reflection = self.self_improving_ai.evaluate_response(query, model_response)
|
89 |
-
neural_reasoning = self.neural_symbolic_engine.integrate_reasoning(query)
|
90 |
|
91 |
final_response = (
|
92 |
f"{model_response}\n\n"
|
@@ -96,7 +86,6 @@ neural_reasoning = self.neural_symbolic_engine.integrate_reasoning(query)
|
|
96 |
)
|
97 |
|
98 |
self.database.log_interaction(user_id, query, final_response)
|
99 |
-
# blockchain_module.store_interaction(user_id, query, final_response)
|
100 |
self._speak_response(final_response)
|
101 |
|
102 |
return {
|
@@ -111,7 +100,6 @@ neural_reasoning = self.neural_symbolic_engine.integrate_reasoning(query)
|
|
111 |
return {"error": "Processing failed - safety protocols engaged"}
|
112 |
|
113 |
async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> Dict[str, Any]:
|
114 |
-
"""Only runs TB analysis if explicitly requested."""
|
115 |
try:
|
116 |
result = await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id)
|
117 |
logger.info(f"TB Diagnostic Result: {result}")
|
@@ -132,12 +120,6 @@ neural_reasoning = self.neural_symbolic_engine.integrate_reasoning(query)
|
|
132 |
with open(config_path, 'r') as file:
|
133 |
return json.load(file)
|
134 |
|
135 |
-
def _initialize_models(self):
|
136 |
-
return {
|
137 |
-
"agix_model": AutoModelForCausalLM.from_pretrained(self.config["model_name"]),
|
138 |
-
"tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"])
|
139 |
-
}
|
140 |
-
|
141 |
def _initialize_vector_memory(self):
|
142 |
return faiss.IndexFlatL2(768)
|
143 |
|
@@ -145,11 +127,6 @@ neural_reasoning = self.neural_symbolic_engine.integrate_reasoning(query)
|
|
145 |
tokenized = self.tokenizer(query, return_tensors="pt")
|
146 |
return tokenized["input_ids"].detach().numpy()
|
147 |
|
148 |
-
async def _generate_local_model_response(self, query: str) -> str:
|
149 |
-
inputs = self.tokenizer(query, return_tensors="pt")
|
150 |
-
outputs = self.model.generate(**inputs)
|
151 |
-
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
152 |
-
|
153 |
def _speak_response(self, response: str):
|
154 |
self.speech_engine.say(response)
|
155 |
self.speech_engine.runAndWait()
|
|
|
13 |
import pyttsx3
|
14 |
import os
|
15 |
|
|
|
|
|
16 |
from components.multi_model_analyzer import MultiAgentSystem
|
17 |
from components.neuro_symbolic_engine import NeuroSymbolicEngine
|
18 |
from components.self_improving_ai import SelfImprovingAI
|
19 |
from modules.secure_memory_loader import load_secure_memory_module
|
20 |
from ethical_filter import EthicalFilter
|
21 |
+
from codette_openai_fallback import query_codette_with_fallback # <<< Fallback-aware
|
22 |
|
|
|
23 |
from CodriaoCore.federated_learning import FederatedAI
|
24 |
from utils.database import Database
|
25 |
from utils.logger import logger
|
26 |
from codriao_tb_module import CodriaoHealthModule
|
27 |
|
28 |
+
|
29 |
class AICoreAGIX:
|
30 |
def __init__(self, config_path: str = "config.json"):
|
31 |
self.ethical_filter = EthicalFilter()
|
32 |
self.config = self._load_config(config_path)
|
|
|
|
|
33 |
self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"])
|
34 |
self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"])
|
35 |
+
self.context_memory = self._initialize_vector_memory()
|
36 |
self.http_session = aiohttp.ClientSession()
|
37 |
self.database = Database()
|
38 |
self.multi_agent_system = MultiAgentSystem()
|
|
|
41 |
self.federated_ai = FederatedAI()
|
42 |
|
43 |
# Secure memory setup
|
44 |
+
self._encryption_key = self.config["security_settings"]["encryption_key"].encode()
|
45 |
secure_memory_module = load_secure_memory_module()
|
46 |
SecureMemorySession = secure_memory_module.SecureMemorySession
|
47 |
self.secure_memory_loader = SecureMemorySession(self._encryption_key)
|
|
|
51 |
|
52 |
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
|
53 |
try:
|
|
|
54 |
result = self.ethical_filter.analyze_query(query)
|
55 |
if result["status"] == "blocked":
|
56 |
return {"error": result["reason"]}
|
57 |
if result["status"] == "flagged":
|
58 |
logger.warning(result["warning"])
|
59 |
|
|
|
60 |
if any(phrase in query.lower() for phrase in ["tb check", "analyze my tb", "run tb diagnostics", "tb test"]):
|
61 |
result = await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id)
|
62 |
return {
|
|
|
68 |
"system_health": result["system_health"]
|
69 |
}
|
70 |
|
|
|
71 |
vectorized_query = self._vectorize_query(query)
|
72 |
self.secure_memory_loader.encrypt_vector(user_id, vectorized_query)
|
|
|
|
|
73 |
user_vectors = self.secure_memory_loader.decrypt_vectors(user_id)
|
74 |
|
75 |
+
# === Use OpenAI w/ fallback ===
|
76 |
+
model_response = query_codette_with_fallback(query, user_id=str(user_id))
|
77 |
+
agent_response = self.multi_agent_system.delegate_task(query)
|
78 |
+
self_reflection = self.self_improving_ai.evaluate_response(query, model_response)
|
79 |
+
neural_reasoning = self.neural_symbolic_engine.integrate_reasoning(query)
|
|
|
|
|
|
|
80 |
|
81 |
final_response = (
|
82 |
f"{model_response}\n\n"
|
|
|
86 |
)
|
87 |
|
88 |
self.database.log_interaction(user_id, query, final_response)
|
|
|
89 |
self._speak_response(final_response)
|
90 |
|
91 |
return {
|
|
|
100 |
return {"error": "Processing failed - safety protocols engaged"}
|
101 |
|
102 |
async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> Dict[str, Any]:
|
|
|
103 |
try:
|
104 |
result = await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id)
|
105 |
logger.info(f"TB Diagnostic Result: {result}")
|
|
|
120 |
with open(config_path, 'r') as file:
|
121 |
return json.load(file)
|
122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
def _initialize_vector_memory(self):
|
124 |
return faiss.IndexFlatL2(768)
|
125 |
|
|
|
127 |
tokenized = self.tokenizer(query, return_tensors="pt")
|
128 |
return tokenized["input_ids"].detach().numpy()
|
129 |
|
|
|
|
|
|
|
|
|
|
|
130 |
def _speak_response(self, response: str):
|
131 |
self.speech_engine.say(response)
|
132 |
self.speech_engine.runAndWait()
|