Spaces:
Runtime error
Runtime error
Update AICoreAGIX_with_TB.py
Browse files- AICoreAGIX_with_TB.py +41 -18
AICoreAGIX_with_TB.py
CHANGED
@@ -17,13 +17,12 @@ from components.neuro_symbolic_engine import NeuroSymbolicEngine
|
|
17 |
from components.self_improving_ai import SelfImprovingAI
|
18 |
from modules.secure_memory_loader import load_secure_memory_module
|
19 |
from ethical_filter import EthicalFilter
|
20 |
-
from codette_openai_fallback import query_codette_with_fallback
|
21 |
-
|
22 |
from CodriaoCore.federated_learning import FederatedAI
|
23 |
from utils.database import Database
|
24 |
from utils.logger import logger
|
25 |
from codriao_tb_module import CodriaoHealthModule
|
26 |
-
|
27 |
|
28 |
class AICoreAGIX:
|
29 |
def __init__(self, config_path: str = "config.json"):
|
@@ -38,9 +37,10 @@ class AICoreAGIX:
|
|
38 |
self.self_improving_ai = SelfImprovingAI()
|
39 |
self.neural_symbolic_engine = NeuroSymbolicEngine()
|
40 |
self.federated_ai = FederatedAI()
|
|
|
41 |
|
42 |
# Secure memory setup
|
43 |
-
self._encryption_key = Fernet.generate_key()
|
44 |
secure_memory_module = load_secure_memory_module()
|
45 |
SecureMemorySession = secure_memory_module.SecureMemorySession
|
46 |
self.secure_memory_loader = SecureMemorySession(self._encryption_key)
|
@@ -48,26 +48,48 @@ class AICoreAGIX:
|
|
48 |
self.speech_engine = pyttsx3.init()
|
49 |
self.health_module = CodriaoHealthModule(ai_core=self)
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
|
52 |
try:
|
53 |
-
# Validate query
|
54 |
if not isinstance(query, str) or len(query.strip()) == 0:
|
55 |
raise ValueError("Invalid query input.")
|
56 |
-
|
|
|
57 |
result = self.ethical_filter.analyze_query(query)
|
58 |
if result["status"] == "blocked":
|
59 |
return {"error": result["reason"]}
|
60 |
if result["status"] == "flagged":
|
61 |
logger.warning(result["warning"])
|
62 |
|
|
|
63 |
if any(phrase in query.lower() for phrase in ["tb check", "analyze my tb", "run tb diagnostics", "tb test"]):
|
64 |
-
|
65 |
-
return result
|
66 |
|
|
|
67 |
vectorized_query = self._vectorize_query(query)
|
68 |
self.secure_memory_loader.encrypt_vector(user_id, vectorized_query)
|
69 |
|
70 |
-
# Gather responses asynchronously
|
71 |
responses = await asyncio.gather(
|
72 |
self._generate_local_model_response(query),
|
73 |
self.multi_agent_system.delegate_task(query),
|
@@ -77,6 +99,11 @@ class AICoreAGIX:
|
|
77 |
|
78 |
final_response = "\n\n".join(responses)
|
79 |
|
|
|
|
|
|
|
|
|
|
|
80 |
self.database.log_interaction(user_id, query, final_response)
|
81 |
self._log_to_blockchain(user_id, query, final_response)
|
82 |
self._speak_response(final_response)
|
@@ -87,17 +114,18 @@ class AICoreAGIX:
|
|
87 |
"context_enhanced": True,
|
88 |
"security_status": "Fully Secure"
|
89 |
}
|
90 |
-
|
91 |
except Exception as e:
|
92 |
logger.error(f"Response generation failed: {e}")
|
93 |
return {"error": "Processing failed - safety protocols engaged"}
|
94 |
|
95 |
async def _generate_local_model_response(self, query: str) -> str:
|
|
|
96 |
inputs = self.tokenizer(query, return_tensors="pt")
|
97 |
outputs = self.model.generate(**inputs)
|
98 |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
99 |
|
100 |
async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> Dict[str, Any]:
|
|
|
101 |
try:
|
102 |
result = await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id)
|
103 |
logger.info(f"TB Diagnostic Result: {result}")
|
@@ -106,18 +134,11 @@ class AICoreAGIX:
|
|
106 |
logger.error(f"TB diagnostics failed: {e}")
|
107 |
return {"tb_risk": "ERROR", "error": str(e)}
|
108 |
|
109 |
-
def _vectorize_query(self, query: str):
|
110 |
-
tokenized = self.tokenizer(query, return_tensors="pt")
|
111 |
-
return tokenized["input_ids"].detach().numpy()
|
112 |
-
|
113 |
-
def _initialize_vector_memory(self):
|
114 |
-
return faiss.IndexFlatL2(768)
|
115 |
-
|
116 |
def _log_to_blockchain(self, user_id: int, query: str, final_response: str):
|
|
|
117 |
retries = 3
|
118 |
for attempt in range(retries):
|
119 |
try:
|
120 |
-
# Replace with real blockchain logging function
|
121 |
logger.info(f"Logging interaction to blockchain: Attempt {attempt + 1}")
|
122 |
break
|
123 |
except Exception as e:
|
@@ -125,6 +146,7 @@ class AICoreAGIX:
|
|
125 |
continue
|
126 |
|
127 |
def _speak_response(self, response: str):
|
|
|
128 |
try:
|
129 |
self.speech_engine.say(response)
|
130 |
self.speech_engine.runAndWait()
|
@@ -132,4 +154,5 @@ class AICoreAGIX:
|
|
132 |
logger.error(f"Speech synthesis failed: {e}")
|
133 |
|
134 |
async def shutdown(self):
|
|
|
135 |
await self.http_session.close()
|
|
|
17 |
from components.self_improving_ai import SelfImprovingAI
|
18 |
from modules.secure_memory_loader import load_secure_memory_module
|
19 |
from ethical_filter import EthicalFilter
|
20 |
+
from codette_openai_fallback import query_codette_with_fallback
|
|
|
21 |
from CodriaoCore.federated_learning import FederatedAI
|
22 |
from utils.database import Database
|
23 |
from utils.logger import logger
|
24 |
from codriao_tb_module import CodriaoHealthModule
|
25 |
+
from failsafe_module import AIFailsafeSystem
|
26 |
|
27 |
class AICoreAGIX:
|
28 |
def __init__(self, config_path: str = "config.json"):
|
|
|
37 |
self.self_improving_ai = SelfImprovingAI()
|
38 |
self.neural_symbolic_engine = NeuroSymbolicEngine()
|
39 |
self.federated_ai = FederatedAI()
|
40 |
+
self.failsafe_system = AIFailsafeSystem()
|
41 |
|
42 |
# Secure memory setup
|
43 |
+
self._encryption_key = Fernet.generate_key()
|
44 |
secure_memory_module = load_secure_memory_module()
|
45 |
SecureMemorySession = secure_memory_module.SecureMemorySession
|
46 |
self.secure_memory_loader = SecureMemorySession(self._encryption_key)
|
|
|
48 |
self.speech_engine = pyttsx3.init()
|
49 |
self.health_module = CodriaoHealthModule(ai_core=self)
|
50 |
|
51 |
+
def _load_config(self, config_path: str) -> dict:
|
52 |
+
"""Loads the configuration file."""
|
53 |
+
try:
|
54 |
+
with open(config_path, 'r') as file:
|
55 |
+
return json.load(file)
|
56 |
+
except FileNotFoundError:
|
57 |
+
logger.error(f"Configuration file not found: {config_path}")
|
58 |
+
raise
|
59 |
+
except json.JSONDecodeError as e:
|
60 |
+
logger.error(f"Error decoding JSON in config file: {config_path}, Error: {e}")
|
61 |
+
raise
|
62 |
+
|
63 |
+
def _initialize_vector_memory(self):
|
64 |
+
"""Initializes FAISS vector memory."""
|
65 |
+
return faiss.IndexFlatL2(768)
|
66 |
+
|
67 |
+
def _vectorize_query(self, query: str):
|
68 |
+
"""Vectorizes user query using tokenizer."""
|
69 |
+
tokenized = self.tokenizer(query, return_tensors="pt")
|
70 |
+
return tokenized["input_ids"].detach().numpy()
|
71 |
+
|
72 |
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
|
73 |
try:
|
74 |
+
# Validate query input
|
75 |
if not isinstance(query, str) or len(query.strip()) == 0:
|
76 |
raise ValueError("Invalid query input.")
|
77 |
+
|
78 |
+
# Ethical filter
|
79 |
result = self.ethical_filter.analyze_query(query)
|
80 |
if result["status"] == "blocked":
|
81 |
return {"error": result["reason"]}
|
82 |
if result["status"] == "flagged":
|
83 |
logger.warning(result["warning"])
|
84 |
|
85 |
+
# Special diagnostics trigger
|
86 |
if any(phrase in query.lower() for phrase in ["tb check", "analyze my tb", "run tb diagnostics", "tb test"]):
|
87 |
+
return await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id)
|
|
|
88 |
|
89 |
+
# Vector memory and responses
|
90 |
vectorized_query = self._vectorize_query(query)
|
91 |
self.secure_memory_loader.encrypt_vector(user_id, vectorized_query)
|
92 |
|
|
|
93 |
responses = await asyncio.gather(
|
94 |
self._generate_local_model_response(query),
|
95 |
self.multi_agent_system.delegate_task(query),
|
|
|
99 |
|
100 |
final_response = "\n\n".join(responses)
|
101 |
|
102 |
+
# Verify response safety
|
103 |
+
safe = self.failsafe_system.verify_response_safety(final_response)
|
104 |
+
if not safe:
|
105 |
+
return {"error": "Failsafe triggered due to unsafe response content."}
|
106 |
+
|
107 |
self.database.log_interaction(user_id, query, final_response)
|
108 |
self._log_to_blockchain(user_id, query, final_response)
|
109 |
self._speak_response(final_response)
|
|
|
114 |
"context_enhanced": True,
|
115 |
"security_status": "Fully Secure"
|
116 |
}
|
|
|
117 |
except Exception as e:
|
118 |
logger.error(f"Response generation failed: {e}")
|
119 |
return {"error": "Processing failed - safety protocols engaged"}
|
120 |
|
121 |
async def _generate_local_model_response(self, query: str) -> str:
|
122 |
+
"""Generates a response using the local model."""
|
123 |
inputs = self.tokenizer(query, return_tensors="pt")
|
124 |
outputs = self.model.generate(**inputs)
|
125 |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
126 |
|
127 |
async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> Dict[str, Any]:
|
128 |
+
"""Runs TB diagnostics with AI modules."""
|
129 |
try:
|
130 |
result = await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id)
|
131 |
logger.info(f"TB Diagnostic Result: {result}")
|
|
|
134 |
logger.error(f"TB diagnostics failed: {e}")
|
135 |
return {"tb_risk": "ERROR", "error": str(e)}
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
def _log_to_blockchain(self, user_id: int, query: str, final_response: str):
|
138 |
+
"""Logs interaction to blockchain with retries."""
|
139 |
retries = 3
|
140 |
for attempt in range(retries):
|
141 |
try:
|
|
|
142 |
logger.info(f"Logging interaction to blockchain: Attempt {attempt + 1}")
|
143 |
break
|
144 |
except Exception as e:
|
|
|
146 |
continue
|
147 |
|
148 |
def _speak_response(self, response: str):
|
149 |
+
"""Speaks out the generated response."""
|
150 |
try:
|
151 |
self.speech_engine.say(response)
|
152 |
self.speech_engine.runAndWait()
|
|
|
154 |
logger.error(f"Speech synthesis failed: {e}")
|
155 |
|
156 |
async def shutdown(self):
|
157 |
+
"""Closes asynchronous resources."""
|
158 |
await self.http_session.close()
|