File size: 24,124 Bytes
7a6b9c3 f9567e5 7a6b9c3 f9567e5 7a6b9c3 20ddbb6 f2a30f0 7a6b9c3 50929d3 c112753 7a6b9c3 0236b52 7a6b9c3 20ddbb6 7a6b9c3 20ddbb6 7a6b9c3 7a820f6 f9567e5 7a6b9c3 f9567e5 7a6b9c3 53f404c 7a6b9c3 7a820f6 485bed7 7a6b9c3 485bed7 7a6b9c3 20ddbb6 7a6b9c3 7a820f6 a3d73ea 485bed7 a3d73ea 485bed7 0f478f2 20ddbb6 7a6b9c3 20ddbb6 0421ac2 20ddbb6 0421ac2 20ddbb6 0421ac2 c112753 7a6b9c3 c112753 7a6b9c3 c112753 7a6b9c3 c47371b 7a6b9c3 c112753 7a6b9c3 c112753 7a6b9c3 436b13d c47371b c112753 0f478f2 485bed7 7a6b9c3 20ddbb6 7a6b9c3 c47371b 7a6b9c3 c47371b 7a6b9c3 c47371b 7a6b9c3 9e49d8b 7a6b9c3 0236b52 7a6b9c3 d73a7e8 beec66d c47371b beec66d c47371b beec66d c47371b c652092 c47371b eddace9 c112753 7a6b9c3 0f7795f c47371b 0f7795f 9c9cba4 f910de6 c112753 c47371b 2c6829a c47371b c112753 035c9fd 9b01db5 035c9fd 9666147 035c9fd 0f7795f 9c9cba4 e39b757 9c9cba4 0f7795f 9c9cba4 82cdee5 0f7795f c47371b 0f7795f 9c9cba4 48167ee 0f7795f 9c9cba4 dfc2a52 0f7795f 035c9fd 0f7795f 035c9fd 0f7795f c47371b c112753 7a6b9c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
import gradio as gr
from absl import flags
from absl import app
from ml_collections import config_flags
import os
import spaces #[uncomment to use ZeroGPU]
import torch
import io
import random
import tempfile
import numpy as np
import torch
import torch.nn.functional as F
from torchvision.utils import save_image
from torchvision.transforms import ToPILImage
from huggingface_hub import hf_hub_download
from absl import logging
import ml_collections
from diffusion.flow_matching import ODEEulerFlowMatchingSolver
import utils
import libs.autoencoder
from libs.clip import FrozenCLIPEmbedder
from configs import t2i_512px_clip_dimr, t2i_256px_clip_dimr
def unpreprocess(x: torch.Tensor) -> torch.Tensor:
x = 0.5 * (x + 1.0)
x.clamp_(0.0, 1.0)
return x
def cosine_similarity_torch(latent1: torch.Tensor, latent2: torch.Tensor) -> torch.Tensor:
latent1_flat = latent1.view(-1)
latent2_flat = latent2.view(-1)
cosine_similarity = F.cosine_similarity(
latent1_flat.unsqueeze(0), latent2_flat.unsqueeze(0), dim=1
)
return cosine_similarity
def kl_divergence(latent1: torch.Tensor, latent2: torch.Tensor) -> torch.Tensor:
latent1_prob = F.softmax(latent1, dim=-1)
latent2_prob = F.softmax(latent2, dim=-1)
latent1_log_prob = torch.log(latent1_prob)
kl_div = F.kl_div(latent1_log_prob, latent2_prob, reduction="batchmean")
return kl_div
def batch_decode(_z: torch.Tensor, decode, batch_size: int = 5) -> torch.Tensor:
num_samples = _z.size(0)
decoded_batches = []
for i in range(0, num_samples, batch_size):
batch = _z[i : i + batch_size]
decoded_batch = decode(batch)
decoded_batches.append(decoded_batch)
return torch.cat(decoded_batches, dim=0)
def get_caption(llm: str, text_model, prompt_dict: dict, batch_size: int):
if batch_size == 3:
# Only addition or only subtraction mode.
assert len(prompt_dict) == 2, "Expected 2 prompts for batch_size 3."
batch_prompts = list(prompt_dict.values()) + [" "]
elif batch_size == 4:
# Addition and subtraction mode.
assert len(prompt_dict) == 3, "Expected 3 prompts for batch_size 4."
batch_prompts = list(prompt_dict.values()) + [" "]
elif batch_size >= 5:
# Linear interpolation mode.
assert len(prompt_dict) == 2, "Expected 2 prompts for linear interpolation."
batch_prompts = [prompt_dict["prompt_1"]] + [" "] * (batch_size - 2) + [prompt_dict["prompt_2"]]
else:
raise ValueError(f"Unsupported batch_size: {batch_size}")
if llm == "clip":
latent, latent_and_others = text_model.encode(batch_prompts)
context = latent_and_others["token_embedding"].detach()
elif llm == "t5":
latent, latent_and_others = text_model.get_text_embeddings(batch_prompts)
context = (latent_and_others["token_embedding"] * 10.0).detach()
else:
raise NotImplementedError(f"Language model {llm} not supported.")
token_mask = latent_and_others["token_mask"].detach()
tokens = latent_and_others["tokens"].detach()
captions = batch_prompts
return context, token_mask, tokens, captions
# Load configuration and initialize models.
# config_dict = t2i_512px_clip_dimr.get_config()
config_dict = t2i_256px_clip_dimr.get_config()
config_1 = ml_collections.ConfigDict(config_dict)
config_dict = t2i_512px_clip_dimr.get_config()
config_2 = ml_collections.ConfigDict(config_dict)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logging.info(f"Using device: {device}")
# Freeze configuration.
config_1 = ml_collections.FrozenConfigDict(config_1)
config_2 = ml_collections.FrozenConfigDict(config_2)
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024 # Currently not used.
# Load the main diffusion model.
repo_id = "QHL067/CrossFlow"
# filename = "pretrained_models/t2i_512px_clip_dimr.pth"
filename = "pretrained_models/t2i_256px_clip_dimr.pth"
checkpoint_path = hf_hub_download(repo_id=repo_id, filename=filename)
nnet_1 = utils.get_nnet(**config_1.nnet)
nnet_1 = nnet_1.to(device)
state_dict = torch.load(checkpoint_path, map_location=device)
nnet_1.load_state_dict(state_dict)
nnet_1.eval()
filename = "pretrained_models/t2i_512px_clip_dimr.pth"
checkpoint_path = hf_hub_download(repo_id=repo_id, filename=filename)
nnet_2 = utils.get_nnet(**config_2.nnet)
nnet_2 = nnet_2.to(device)
state_dict = torch.load(checkpoint_path, map_location=device)
nnet_2.load_state_dict(state_dict)
nnet_2.eval()
# Initialize text model.
llm = "clip"
clip = FrozenCLIPEmbedder()
clip.eval()
clip.to(device)
# Load autoencoder.
autoencoder = libs.autoencoder.get_model(**config_1.autoencoder)
autoencoder.to(device)
@torch.cuda.amp.autocast()
def encode(_batch: torch.Tensor) -> torch.Tensor:
"""Encode a batch of images using the autoencoder."""
return autoencoder.encode(_batch)
@torch.cuda.amp.autocast()
def decode(_batch: torch.Tensor) -> torch.Tensor:
"""Decode a batch of latent vectors using the autoencoder."""
return autoencoder.decode(_batch)
@spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt1,
prompt2,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
num_of_interpolation,
operation_mode,
save_gpu_memory=True,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
torch.manual_seed(seed)
if device.type == "cuda":
torch.cuda.manual_seed_all(seed)
# Only support interpolation in this implementation.
prompt_dict = {"prompt_1": prompt1, "prompt_2": prompt2}
for key, value in prompt_dict.items():
assert value is not None, f"{key} must not be None."
if operation_mode == 'Interpolation':
assert num_of_interpolation >= 5, "For linear interpolation, please sample at least five images."
else:
assert num_of_interpolation == 3, "For arithmetic, please sample three images."
if num_of_interpolation == 3:
nnet = nnet_2
config = config_2
else:
nnet = nnet_1
config = config_1
# nnet = nnet_1
# config = config_1
# Get text embeddings and tokens.
_context, _token_mask, _token, _caption = get_caption(
llm, clip, prompt_dict=prompt_dict, batch_size=num_of_interpolation
)
with torch.no_grad():
_z_gaussian = torch.randn(num_of_interpolation, *config.z_shape, device=device)
_z_x0, _mu, _log_var = nnet(
_context, text_encoder=True, shape=_z_gaussian.shape, mask=_token_mask
)
_z_init = _z_x0.reshape(_z_gaussian.shape)
# Prepare the initial latent representations based on the number of interpolations.
if num_of_interpolation == 3:
# Addition or subtraction mode.
if operation_mode == 'Addition':
z_init_temp = _z_init[0] + _z_init[1]
elif operation_mode == 'Subtraction':
z_init_temp = _z_init[0] - _z_init[1]
else:
raise NotImplementedError("Either prompt_a or prompt_s must be provided for 3-sample mode.")
mean = z_init_temp.mean()
std = z_init_temp.std()
_z_init[2] = (z_init_temp - mean) / std
elif num_of_interpolation == 4:
raise ValueError("Unsupported number of interpolations.")
elif num_of_interpolation >= 5:
tensor_a = _z_init[0]
tensor_b = _z_init[-1]
num_interpolations = num_of_interpolation - 2
interpolations = [
tensor_a + (tensor_b - tensor_a) * (i / (num_interpolations + 1))
for i in range(1, num_interpolations + 1)
]
_z_init = torch.stack([tensor_a] + interpolations + [tensor_b], dim=0)
else:
raise ValueError("Unsupported number of interpolations.")
assert guidance_scale > 1, "Guidance scale must be greater than 1."
has_null_indicator = hasattr(config.nnet.model_args, "cfg_indicator")
ode_solver = ODEEulerFlowMatchingSolver(
nnet,
bdv_model_fn=None,
step_size_type="step_in_dsigma",
guidance_scale=guidance_scale,
)
_z, _ = ode_solver.sample(
x_T=_z_init,
batch_size=num_of_interpolation,
sample_steps=num_inference_steps,
unconditional_guidance_scale=guidance_scale,
has_null_indicator=has_null_indicator,
)
print("+++++"*20)
print("Now, save images")
print("+++++"*20)
if save_gpu_memory:
image_unprocessed = batch_decode(_z, decode)
else:
image_unprocessed = decode(_z)
samples = unpreprocess(image_unprocessed).contiguous()
to_pil = ToPILImage()
pil_images = [to_pil(img) for img in samples]
if num_of_interpolation == 3:
return pil_images[0], pil_images[1], pil_images[2], seed
else:
first_image = pil_images[0]
last_image = pil_images[-1]
gif_buffer = io.BytesIO()
pil_images[0].save(gif_buffer, format="GIF", save_all=True, append_images=pil_images[1:], duration=200, loop=0)
gif_buffer.seek(0)
gif_bytes = gif_buffer.read()
# Save the GIF bytes to a temporary file and get its path
temp_gif = tempfile.NamedTemporaryFile(delete=False, suffix=".gif")
temp_gif.write(gif_bytes)
temp_gif.close()
gif_path = temp_gif.name
return first_image, last_image, gif_path, seed
# return first_image, last_image, seed
# examples = [
# "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
# "An astronaut riding a green horse",
# "A delicious ceviche cheesecake slice",
# ]
def infer_tab1(prompt1, prompt2, seed, randomize_seed, guidance_scale, num_inference_steps, num_of_interpolation):
default_op = "Interpolation"
return infer(prompt1, prompt2, seed, randomize_seed, guidance_scale, num_inference_steps, num_of_interpolation, default_op)
# Wrapper for Tab 2: Uses operation_mode and fixes num_of_interpolation to 3.
def infer_tab2(prompt1, prompt2, seed, randomize_seed, guidance_scale, num_inference_steps, operation_mode):
default_interpolation = 3
return infer(prompt1, prompt2, seed, randomize_seed, guidance_scale, num_inference_steps, default_interpolation, operation_mode)
examples_1 = [
["A robot cooking dinner in the kitchen", "An orange cat wearing sunglasses on a ship"],
]
examples_2 = [
["A dog wearing sunglasses", "a hat"],
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
# with gr.Blocks(css=css) as demo:
# with gr.Column(elem_id="col-container"):
# gr.Markdown("# CrossFlow")
# gr.Markdown("[CrossFlow](https://cross-flow.github.io/) directly transforms text representations into images for text-to-image generation, without the need for both the noise distribution and conditioning mechanism.")
# gr.Markdown("This direct mapping enables meaningful 'Linear Interpolation' and 'Arithmetic Operations' in the text latent space, as demonstrated here.")
# with gr.Tabs():
# with gr.Tab("Linear Interpolation"):
# gr.Markdown("This demo uses 256px images, 25 sampling steps (instead of 50), and 10 interpolations (instead of 50) to conserve GPU memory. For better results, see the original [code](https://github.com/qihao067/CrossFlow). (You may adjust them in Advanced Settings, but doing so may trigger OOM errors.)")
# # gr.Markdown("CrossFlow directly transforms text representations into images for text-to-image generation, enabling interpolation in the input text latent space.")
# with gr.Row():
# prompt1 = gr.Text(
# label="Prompt_1",
# show_label=False,
# max_lines=1,
# placeholder="Enter your prompt for the first image",
# container=False,
# )
# with gr.Row():
# prompt2 = gr.Text(
# label="Prompt_2",
# show_label=False,
# max_lines=1,
# placeholder="Enter your prompt for the second image",
# container=False,
# )
# with gr.Row():
# run_button = gr.Button("Run", scale=0, variant="primary")
# # Create separate outputs for the first image, last image, and the animated GIF
# first_image_output = gr.Image(label="Image of the first prompt", show_label=True)
# last_image_output = gr.Image(label="Image of the second prompt", show_label=True)
# gif_output = gr.Image(label="Linear interpolation", show_label=True)
# with gr.Accordion("Advanced Settings", open=False):
# seed = gr.Slider(
# label="Seed",
# minimum=0,
# maximum=MAX_SEED,
# step=1,
# value=0,
# )
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
# with gr.Row():
# guidance_scale = gr.Slider(
# label="Guidance scale",
# minimum=0.0,
# maximum=10.0,
# step=0.1,
# value=7.0, # Replace with defaults that work for your model
# )
# with gr.Row():
# num_inference_steps = gr.Slider(
# label="Number of inference steps - 50 inference steps are recommended; but you can reduce to 20 if the demo fails.",
# minimum=1,
# maximum=50,
# step=1,
# value=25, # Replace with defaults that work for your model
# )
# with gr.Row():
# num_of_interpolation = gr.Slider(
# label="Number of images for interpolation - More images yield smoother transitions but require more resources and may fail.",
# minimum=5,
# maximum=50,
# step=1,
# value=10, # Replace with defaults that work for your model
# )
# gr.Examples(examples=examples, inputs=[prompt1, prompt2])
# with gr.Tab("Arithmetic Operations"):
# # The second tab is currently empty. You can add more components later.
# gr.Markdown("This demo only supports addition or subtraction between two text latents ('Prompt_1 + Prompt_2' or 'Prompt_1 - Prompt_2'). For the other arithmetic operations, see the original [code](https://github.com/qihao067/CrossFlow).")
# with gr.Row():
# prompt1 = gr.Text(
# label="Prompt_1",
# show_label=False,
# max_lines=1,
# placeholder="Enter your prompt for the first image",
# container=False,
# )
# with gr.Row():
# prompt2 = gr.Text(
# label="Prompt_2",
# show_label=False,
# max_lines=1,
# placeholder="Enter your prompt for the second image",
# container=False,
# )
# with gr.Row():
# operation_mode = gr.Radio(
# choices=["Addition", "Subtraction"],
# label="Operation Mode",
# value="Addition",
# )
# with gr.Row():
# run_button = gr.Button("Run", scale=0, variant="primary")
# # Create separate outputs for the first image, last image, and the animated GIF
# first_image_output = gr.Image(label="Image of the first prompt", show_label=True)
# last_image_output = gr.Image(label="Image of the second prompt", show_label=True)
# gif_output = gr.Image(label="Linear interpolation", show_label=True)
# with gr.Accordion("Advanced Settings", open=False):
# seed = gr.Slider(
# label="Seed",
# minimum=0,
# maximum=MAX_SEED,
# step=1,
# value=0,
# )
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
# with gr.Row():
# guidance_scale = gr.Slider(
# label="Guidance scale",
# minimum=0.0,
# maximum=10.0,
# step=0.1,
# value=7.0, # Replace with defaults that work for your model
# )
# # with gr.Row():
# # num_inference_steps = gr.Slider(
# # label="Number of inference steps - 50 inference steps are recommended; but you can reduce to 20 if the demo fails.",
# # minimum=1,
# # maximum=50,
# # step=1,
# # value=55, # Replace with defaults that work for your model
# # )
# with gr.Row():
# num_of_interpolation = gr.Slider(
# label="Number of images for interpolation - More images yield smoother transitions but require more resources and may fail.",
# minimum=5,
# maximum=50,
# step=1,
# value=50, # Replace with defaults that work for your model
# )
# gr.Examples(examples=examples, inputs=[prompt1, prompt2])
# gr.on(
# triggers=[run_button.click, prompt1.submit, prompt2.submit],
# fn=infer,
# inputs=[
# prompt1,
# prompt2,
# seed,
# randomize_seed,
# guidance_scale,
# num_inference_steps,
# num_of_interpolation,
# ],
# outputs=[first_image_output, last_image_output, gif_output, seed],
# # outputs=[first_image_output, last_image_output, seed],
# )
with gr.Blocks(css=css) as demo:
gr.Markdown("# CrossFlow")
gr.Markdown("[CVPR 2025] Flowing from Words to Pixels: A Framework for Cross-Modality Evolution")
gr.Markdown("[CrossFlow](https://cross-flow.github.io/) achieves text-to-image generation by directly mapping text representations (source distribution) to images (target distribution), eliminating the need for a noise distribution or conditioning mechanism.")
gr.Markdown("This direct mapping enables meaningful 'Linear Interpolation' and 'Arithmetic Operations' in the text latent space, as demonstrated here.")
with gr.Tabs():
# --- Tab 1: Interpolation Mode (no operation_mode) ---
with gr.Tab("[Linear Interpolation]"):
gr.Markdown("This demo uses 256px images, 25 sampling steps (instead of 50), and 10 interpolations (instead of 50) to conserve GPU memory.")
gr.Markdown("**You will get much better results with the original [code](https://github.com/qihao067/CrossFlow)**. (You may also adjust the sampling steps and interpolations in Advanced Settings, but doing so may trigger OOM errors.)")
prompt1_tab1 = gr.Text(placeholder="Prompt for first image", label="Prompt 1")
prompt2_tab1 = gr.Text(placeholder="Prompt for second image", label="Prompt 2")
seed_tab1 = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, value=0, label="Seed")
randomize_seed_tab1 = gr.Checkbox(label="Randomize seed", value=True)
with gr.Accordion("Advanced Settings", open=False):
guidance_scale_tab1 = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=7.0, label="Guidance Scale")
num_inference_steps_tab1 = gr.Slider(minimum=1, maximum=50, step=1, value=25, label="Number of Inference Steps")
num_of_interpolation_tab1 = gr.Slider(minimum=5, maximum=50, step=1, value=10, label="Number of Images for Interpolation")
run_button_tab1 = gr.Button("Run")
first_image_output_tab1 = gr.Image(label="Image of the first prompt")
last_image_output_tab1 = gr.Image(label="Image of the second prompt")
gif_output_tab1 = gr.Image(label="Linear interpolation")
run_button_tab1.click(
fn=infer_tab1,
inputs=[
prompt1_tab1,
prompt2_tab1,
seed_tab1,
randomize_seed_tab1,
guidance_scale_tab1,
num_inference_steps_tab1,
num_of_interpolation_tab1
],
outputs=[first_image_output_tab1, last_image_output_tab1, gif_output_tab1, seed_tab1]
)
gr.Examples(examples=examples_1, inputs=[prompt1_tab1, prompt2_tab1])
# --- Tab 2: Operation Mode (no num_of_interpolation) ---
with gr.Tab("[Arithmetic Operations]"):
gr.Markdown("This demo only supports addition or subtraction between two text latents, i.e., 'VE(Prompt_1) + VE(Prompt_2)' or 'VE(Prompt_1) - VE(Prompt_2)'. For the other arithmetic operations, see the original [code](https://github.com/qihao067/CrossFlow).")
prompt1_tab2 = gr.Text(placeholder="Prompt for first image", label="Prompt 1")
prompt2_tab2 = gr.Text(placeholder="Prompt for second image", label="Prompt 2")
seed_tab2 = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, value=0, label="Seed")
randomize_seed_tab2 = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale_tab2 = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=7.0, label="Guidance Scale")
num_inference_steps_tab2 = gr.Slider(minimum=1, maximum=50, step=1, value=50, label="Number of Inference Steps")
operation_mode_tab2 = gr.Radio(choices=["Addition", "Subtraction"], label="Operation Mode", value="Addition")
run_button_tab2 = gr.Button("Run")
first_image_output_tab2 = gr.Image(label="Image of the first prompt")
last_image_output_tab2 = gr.Image(label="Image of the second prompt")
gif_output_tab2 = gr.Image(label="Resulting image produced by the arithmetic operations.")
run_button_tab2.click(
fn=infer_tab2,
inputs=[
prompt1_tab2,
prompt2_tab2,
seed_tab2,
randomize_seed_tab2,
guidance_scale_tab2,
num_inference_steps_tab2,
operation_mode_tab2
],
outputs=[first_image_output_tab2, last_image_output_tab2, gif_output_tab2, seed_tab2]
)
gr.Examples(examples=examples_2, inputs=[prompt1_tab2, prompt2_tab2])
if __name__ == "__main__":
demo.launch()
|