vis
Browse files
app.py
CHANGED
@@ -1,402 +1,249 @@
|
|
1 |
-
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
|
8 |
-
|
9 |
-
|
10 |
|
11 |
|
12 |
-
|
13 |
-
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
|
22 |
-
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
#
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
#
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
#
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
#
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
#
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
# # Load the main diffusion model.
|
108 |
-
# repo_id = "QHL067/CrossFlow"
|
109 |
-
# filename = "pretrained_models/t2i_512px_clip_dimr.pth"
|
110 |
-
# checkpoint_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
111 |
-
# nnet = utils.get_nnet(**config.nnet)
|
112 |
-
# nnet = nnet.to(device)
|
113 |
-
# state_dict = torch.load(checkpoint_path, map_location=device)
|
114 |
-
# nnet.load_state_dict(state_dict)
|
115 |
-
# nnet.eval()
|
116 |
-
|
117 |
-
# # Initialize text model.
|
118 |
-
# llm = "clip"
|
119 |
-
# clip = FrozenCLIPEmbedder()
|
120 |
-
# clip.eval()
|
121 |
-
# clip.to(device)
|
122 |
-
|
123 |
-
# # Load autoencoder.
|
124 |
-
# autoencoder = libs.autoencoder.get_model(**config.autoencoder)
|
125 |
-
# autoencoder.to(device)
|
126 |
-
|
127 |
-
|
128 |
-
# @torch.cuda.amp.autocast()
|
129 |
-
# def encode(_batch: torch.Tensor) -> torch.Tensor:
|
130 |
-
# """Encode a batch of images using the autoencoder."""
|
131 |
-
# return autoencoder.encode(_batch)
|
132 |
-
|
133 |
-
|
134 |
-
# @torch.cuda.amp.autocast()
|
135 |
-
# def decode(_batch: torch.Tensor) -> torch.Tensor:
|
136 |
-
# """Decode a batch of latent vectors using the autoencoder."""
|
137 |
-
# return autoencoder.decode(_batch)
|
138 |
-
|
139 |
-
|
140 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
141 |
-
# def infer(
|
142 |
-
# prompt1,
|
143 |
-
# prompt2,
|
144 |
-
# seed,
|
145 |
-
# randomize_seed,
|
146 |
-
# guidance_scale,
|
147 |
-
# num_inference_steps,
|
148 |
-
# num_of_interpolation,
|
149 |
-
# save_gpu_memory=True,
|
150 |
-
# progress=gr.Progress(track_tqdm=True),
|
151 |
-
# ):
|
152 |
-
# if randomize_seed:
|
153 |
-
# seed = random.randint(0, MAX_SEED)
|
154 |
-
|
155 |
-
# torch.manual_seed(seed)
|
156 |
-
# if device.type == "cuda":
|
157 |
-
# torch.cuda.manual_seed_all(seed)
|
158 |
-
|
159 |
-
# # Only support interpolation in this implementation.
|
160 |
-
# prompt_dict = {"prompt_1": prompt1, "prompt_2": prompt2}
|
161 |
-
# for key, value in prompt_dict.items():
|
162 |
-
# assert value is not None, f"{key} must not be None."
|
163 |
-
# assert num_of_interpolation >= 5, "For linear interpolation, please sample at least five images."
|
164 |
-
|
165 |
-
# # Get text embeddings and tokens.
|
166 |
-
# _context, _token_mask, _token, _caption = get_caption(
|
167 |
-
# llm, clip, prompt_dict=prompt_dict, batch_size=num_of_interpolation
|
168 |
-
# )
|
169 |
-
|
170 |
-
# with torch.no_grad():
|
171 |
-
# _z_gaussian = torch.randn(num_of_interpolation, *config.z_shape, device=device)
|
172 |
-
# _z_x0, _mu, _log_var = nnet(
|
173 |
-
# _context, text_encoder=True, shape=_z_gaussian.shape, mask=_token_mask
|
174 |
-
# )
|
175 |
-
# _z_init = _z_x0.reshape(_z_gaussian.shape)
|
176 |
-
|
177 |
-
# # Prepare the initial latent representations based on the number of interpolations.
|
178 |
-
# if num_of_interpolation == 3:
|
179 |
-
# # Addition or subtraction mode.
|
180 |
-
# if config.prompt_a is not None:
|
181 |
-
# assert config.prompt_s is None, "Only one of prompt_a or prompt_s should be provided."
|
182 |
-
# z_init_temp = _z_init[0] + _z_init[1]
|
183 |
-
# elif config.prompt_s is not None:
|
184 |
-
# assert config.prompt_a is None, "Only one of prompt_a or prompt_s should be provided."
|
185 |
-
# z_init_temp = _z_init[0] - _z_init[1]
|
186 |
-
# else:
|
187 |
-
# raise NotImplementedError("Either prompt_a or prompt_s must be provided for 3-sample mode.")
|
188 |
-
# mean = z_init_temp.mean()
|
189 |
-
# std = z_init_temp.std()
|
190 |
-
# _z_init[2] = (z_init_temp - mean) / std
|
191 |
-
|
192 |
-
# elif num_of_interpolation == 4:
|
193 |
-
# z_init_temp = _z_init[0] + _z_init[1] - _z_init[2]
|
194 |
-
# mean = z_init_temp.mean()
|
195 |
-
# std = z_init_temp.std()
|
196 |
-
# _z_init[3] = (z_init_temp - mean) / std
|
197 |
-
|
198 |
-
# elif num_of_interpolation >= 5:
|
199 |
-
# tensor_a = _z_init[0]
|
200 |
-
# tensor_b = _z_init[-1]
|
201 |
-
# num_interpolations = num_of_interpolation - 2
|
202 |
-
# interpolations = [
|
203 |
-
# tensor_a + (tensor_b - tensor_a) * (i / (num_interpolations + 1))
|
204 |
-
# for i in range(1, num_interpolations + 1)
|
205 |
-
# ]
|
206 |
-
# _z_init = torch.stack([tensor_a] + interpolations + [tensor_b], dim=0)
|
207 |
-
|
208 |
-
# else:
|
209 |
-
# raise ValueError("Unsupported number of interpolations.")
|
210 |
-
|
211 |
-
# assert guidance_scale > 1, "Guidance scale must be greater than 1."
|
212 |
-
|
213 |
-
# has_null_indicator = hasattr(config.nnet.model_args, "cfg_indicator")
|
214 |
-
# ode_solver = ODEEulerFlowMatchingSolver(
|
215 |
-
# nnet,
|
216 |
-
# bdv_model_fn=None,
|
217 |
-
# step_size_type="step_in_dsigma",
|
218 |
-
# guidance_scale=guidance_scale,
|
219 |
-
# )
|
220 |
-
# _z, _ = ode_solver.sample(
|
221 |
-
# x_T=_z_init,
|
222 |
-
# batch_size=num_of_interpolation,
|
223 |
-
# sample_steps=num_inference_steps,
|
224 |
-
# unconditional_guidance_scale=guidance_scale,
|
225 |
-
# has_null_indicator=has_null_indicator,
|
226 |
-
# )
|
227 |
-
|
228 |
-
# if save_gpu_memory:
|
229 |
-
# image_unprocessed = batch_decode(_z, decode)
|
230 |
-
# else:
|
231 |
-
# image_unprocessed = decode(_z)
|
232 |
-
|
233 |
-
# samples = unpreprocess(image_unprocessed).contiguous()[0]
|
234 |
-
|
235 |
-
# # return samples, seed
|
236 |
-
# return seed
|
237 |
-
|
238 |
-
|
239 |
-
# # examples = [
|
240 |
-
# # "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
241 |
-
# # "An astronaut riding a green horse",
|
242 |
-
# # "A delicious ceviche cheesecake slice",
|
243 |
-
# # ]
|
244 |
|
245 |
-
#
|
246 |
-
|
247 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
|
249 |
-
#
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
# """
|
255 |
-
|
256 |
-
# with gr.Blocks(css=css) as demo:
|
257 |
-
# with gr.Column(elem_id="col-container"):
|
258 |
-
# gr.Markdown(" # CrossFlow")
|
259 |
-
# gr.Markdown(" CrossFlow directly transforms text representations into images for text-to-image generation, enabling interpolation in the input text latent space.")
|
260 |
-
|
261 |
-
# with gr.Row():
|
262 |
-
# prompt1 = gr.Text(
|
263 |
-
# label="Prompt_1",
|
264 |
-
# show_label=False,
|
265 |
-
# max_lines=1,
|
266 |
-
# placeholder="Enter your prompt for the first image",
|
267 |
-
# container=False,
|
268 |
-
# )
|
269 |
-
|
270 |
-
# with gr.Row():
|
271 |
-
# prompt2 = gr.Text(
|
272 |
-
# label="Prompt_2",
|
273 |
-
# show_label=False,
|
274 |
-
# max_lines=1,
|
275 |
-
# placeholder="Enter your prompt for the second image",
|
276 |
-
# container=False,
|
277 |
-
# )
|
278 |
-
|
279 |
-
# with gr.Row():
|
280 |
-
# run_button = gr.Button("Run", scale=0, variant="primary")
|
281 |
-
|
282 |
-
# result = gr.Image(label="Result", show_label=False)
|
283 |
-
|
284 |
-
# with gr.Accordion("Advanced Settings", open=False):
|
285 |
-
# seed = gr.Slider(
|
286 |
-
# label="Seed",
|
287 |
-
# minimum=0,
|
288 |
-
# maximum=MAX_SEED,
|
289 |
-
# step=1,
|
290 |
-
# value=0,
|
291 |
-
# )
|
292 |
-
|
293 |
-
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
294 |
-
|
295 |
-
# with gr.Row():
|
296 |
-
# guidance_scale = gr.Slider(
|
297 |
-
# label="Guidance scale",
|
298 |
-
# minimum=0.0,
|
299 |
-
# maximum=10.0,
|
300 |
-
# step=0.1,
|
301 |
-
# value=7.0, # Replace with defaults that work for your model
|
302 |
-
# )
|
303 |
-
# with gr.Row():
|
304 |
-
# num_inference_steps = gr.Slider(
|
305 |
-
# label="Number of inference steps",
|
306 |
-
# minimum=1,
|
307 |
-
# maximum=50,
|
308 |
-
# step=1,
|
309 |
-
# value=50, # Replace with defaults that work for your model
|
310 |
-
# )
|
311 |
-
# with gr.Row():
|
312 |
-
# num_of_interpolation = gr.Slider(
|
313 |
-
# label="Number of images for interpolation",
|
314 |
-
# minimum=5,
|
315 |
-
# maximum=50,
|
316 |
-
# step=1,
|
317 |
-
# value=10, # Replace with defaults that work for your model
|
318 |
-
# )
|
319 |
-
|
320 |
-
# gr.Examples(examples=examples, inputs=[prompt1, prompt2])
|
321 |
-
# gr.on(
|
322 |
-
# triggers=[run_button.click, prompt1.submit, prompt2.submit],
|
323 |
-
# fn=infer,
|
324 |
-
# inputs=[
|
325 |
-
# prompt1,
|
326 |
-
# prompt2,
|
327 |
-
# seed,
|
328 |
-
# randomize_seed,
|
329 |
-
# guidance_scale,
|
330 |
-
# num_inference_steps,
|
331 |
-
# num_of_interpolation,
|
332 |
-
# ],
|
333 |
-
# # outputs=[result, seed],
|
334 |
-
# outputs=[seed],
|
335 |
-
# )
|
336 |
-
|
337 |
-
# if __name__ == "__main__":
|
338 |
-
# demo.launch()
|
339 |
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
|
344 |
-
# import spaces #[uncomment to use ZeroGPU]
|
345 |
-
from diffusers import DiffusionPipeline
|
346 |
-
import torch
|
347 |
|
348 |
-
|
349 |
-
|
|
|
|
|
350 |
|
351 |
-
if torch.cuda.is_available():
|
352 |
-
torch_dtype = torch.float16
|
353 |
-
else:
|
354 |
-
torch_dtype = torch.float32
|
355 |
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
MAX_IMAGE_SIZE = 1024
|
361 |
|
362 |
|
363 |
-
|
364 |
def infer(
|
365 |
-
|
366 |
-
|
367 |
seed,
|
368 |
randomize_seed,
|
369 |
-
width,
|
370 |
-
height,
|
371 |
guidance_scale,
|
372 |
num_inference_steps,
|
|
|
|
|
373 |
progress=gr.Progress(track_tqdm=True),
|
374 |
):
|
375 |
if randomize_seed:
|
376 |
seed = random.randint(0, MAX_SEED)
|
377 |
|
378 |
-
|
|
|
|
|
379 |
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
width=width,
|
386 |
-
height=height,
|
387 |
-
generator=generator,
|
388 |
-
).images[0]
|
389 |
|
390 |
-
|
391 |
-
|
|
|
|
|
392 |
|
393 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
394 |
|
395 |
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
examples = [
|
397 |
-
"
|
398 |
-
"An astronaut riding a green horse",
|
399 |
-
"A delicious ceviche cheesecake slice",
|
400 |
]
|
401 |
|
402 |
css = """
|
@@ -408,29 +255,33 @@ css = """
|
|
408 |
|
409 |
with gr.Blocks(css=css) as demo:
|
410 |
with gr.Column(elem_id="col-container"):
|
411 |
-
gr.Markdown(" #
|
|
|
412 |
|
413 |
with gr.Row():
|
414 |
-
|
415 |
-
label="
|
416 |
show_label=False,
|
417 |
max_lines=1,
|
418 |
-
placeholder="Enter your prompt",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
419 |
container=False,
|
420 |
)
|
421 |
|
|
|
422 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
423 |
|
424 |
result = gr.Image(label="Result", show_label=False)
|
425 |
|
426 |
with gr.Accordion("Advanced Settings", open=False):
|
427 |
-
negative_prompt = gr.Text(
|
428 |
-
label="Negative prompt",
|
429 |
-
max_lines=1,
|
430 |
-
placeholder="Enter a negative prompt",
|
431 |
-
visible=False,
|
432 |
-
)
|
433 |
-
|
434 |
seed = gr.Slider(
|
435 |
label="Seed",
|
436 |
minimum=0,
|
@@ -441,56 +292,47 @@ with gr.Blocks(css=css) as demo:
|
|
441 |
|
442 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
443 |
|
444 |
-
with gr.Row():
|
445 |
-
width = gr.Slider(
|
446 |
-
label="Width",
|
447 |
-
minimum=256,
|
448 |
-
maximum=MAX_IMAGE_SIZE,
|
449 |
-
step=32,
|
450 |
-
value=1024, # Replace with defaults that work for your model
|
451 |
-
)
|
452 |
-
|
453 |
-
height = gr.Slider(
|
454 |
-
label="Height",
|
455 |
-
minimum=256,
|
456 |
-
maximum=MAX_IMAGE_SIZE,
|
457 |
-
step=32,
|
458 |
-
value=1024, # Replace with defaults that work for your model
|
459 |
-
)
|
460 |
-
|
461 |
with gr.Row():
|
462 |
guidance_scale = gr.Slider(
|
463 |
label="Guidance scale",
|
464 |
minimum=0.0,
|
465 |
maximum=10.0,
|
466 |
step=0.1,
|
467 |
-
value=
|
468 |
)
|
469 |
-
|
470 |
num_inference_steps = gr.Slider(
|
471 |
label="Number of inference steps",
|
472 |
minimum=1,
|
473 |
maximum=50,
|
474 |
step=1,
|
475 |
-
value=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
476 |
)
|
477 |
|
478 |
-
gr.Examples(examples=examples, inputs=[
|
479 |
gr.on(
|
480 |
-
triggers=[run_button.click,
|
481 |
fn=infer,
|
482 |
inputs=[
|
483 |
-
|
484 |
-
|
485 |
seed,
|
486 |
randomize_seed,
|
487 |
-
width,
|
488 |
-
height,
|
489 |
guidance_scale,
|
490 |
num_inference_steps,
|
|
|
491 |
],
|
492 |
-
outputs=[result, seed],
|
|
|
493 |
)
|
494 |
|
495 |
if __name__ == "__main__":
|
496 |
-
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
|
3 |
+
from absl import flags
|
4 |
+
from absl import app
|
5 |
+
from ml_collections import config_flags
|
6 |
+
import os
|
7 |
|
8 |
+
import spaces #[uncomment to use ZeroGPU]
|
9 |
+
import torch
|
10 |
|
11 |
|
12 |
+
import os
|
13 |
+
import random
|
14 |
|
15 |
+
import numpy as np
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from torchvision.utils import save_image
|
19 |
+
from huggingface_hub import hf_hub_download
|
20 |
|
21 |
+
from absl import logging
|
22 |
+
import ml_collections
|
23 |
|
24 |
+
from diffusion.flow_matching import ODEEulerFlowMatchingSolver
|
25 |
+
import utils
|
26 |
+
import libs.autoencoder
|
27 |
+
from libs.clip import FrozenCLIPEmbedder
|
28 |
+
from configs import t2i_512px_clip_dimr
|
29 |
|
30 |
|
31 |
+
def unpreprocess(x: torch.Tensor) -> torch.Tensor:
|
32 |
+
x = 0.5 * (x + 1.0)
|
33 |
+
x.clamp_(0.0, 1.0)
|
34 |
+
return x
|
35 |
|
36 |
+
def cosine_similarity_torch(latent1: torch.Tensor, latent2: torch.Tensor) -> torch.Tensor:
|
37 |
+
latent1_flat = latent1.view(-1)
|
38 |
+
latent2_flat = latent2.view(-1)
|
39 |
+
cosine_similarity = F.cosine_similarity(
|
40 |
+
latent1_flat.unsqueeze(0), latent2_flat.unsqueeze(0), dim=1
|
41 |
+
)
|
42 |
+
return cosine_similarity
|
43 |
+
|
44 |
+
def kl_divergence(latent1: torch.Tensor, latent2: torch.Tensor) -> torch.Tensor:
|
45 |
+
latent1_prob = F.softmax(latent1, dim=-1)
|
46 |
+
latent2_prob = F.softmax(latent2, dim=-1)
|
47 |
+
latent1_log_prob = torch.log(latent1_prob)
|
48 |
+
kl_div = F.kl_div(latent1_log_prob, latent2_prob, reduction="batchmean")
|
49 |
+
return kl_div
|
50 |
+
|
51 |
+
def batch_decode(_z: torch.Tensor, decode, batch_size: int = 10) -> torch.Tensor:
|
52 |
+
num_samples = _z.size(0)
|
53 |
+
decoded_batches = []
|
54 |
+
|
55 |
+
for i in range(0, num_samples, batch_size):
|
56 |
+
batch = _z[i : i + batch_size]
|
57 |
+
decoded_batch = decode(batch)
|
58 |
+
decoded_batches.append(decoded_batch)
|
59 |
+
|
60 |
+
return torch.cat(decoded_batches, dim=0)
|
61 |
+
|
62 |
+
def get_caption(llm: str, text_model, prompt_dict: dict, batch_size: int):
|
63 |
+
if batch_size == 3:
|
64 |
+
# Only addition or only subtraction mode.
|
65 |
+
assert len(prompt_dict) == 2, "Expected 2 prompts for batch_size 3."
|
66 |
+
batch_prompts = list(prompt_dict.values()) + [" "]
|
67 |
+
elif batch_size == 4:
|
68 |
+
# Addition and subtraction mode.
|
69 |
+
assert len(prompt_dict) == 3, "Expected 3 prompts for batch_size 4."
|
70 |
+
batch_prompts = list(prompt_dict.values()) + [" "]
|
71 |
+
elif batch_size >= 5:
|
72 |
+
# Linear interpolation mode.
|
73 |
+
assert len(prompt_dict) == 2, "Expected 2 prompts for linear interpolation."
|
74 |
+
batch_prompts = [prompt_dict["prompt_1"]] + [" "] * (batch_size - 2) + [prompt_dict["prompt_2"]]
|
75 |
+
else:
|
76 |
+
raise ValueError(f"Unsupported batch_size: {batch_size}")
|
77 |
+
|
78 |
+
if llm == "clip":
|
79 |
+
latent, latent_and_others = text_model.encode(batch_prompts)
|
80 |
+
context = latent_and_others["token_embedding"].detach()
|
81 |
+
elif llm == "t5":
|
82 |
+
latent, latent_and_others = text_model.get_text_embeddings(batch_prompts)
|
83 |
+
context = (latent_and_others["token_embedding"] * 10.0).detach()
|
84 |
+
else:
|
85 |
+
raise NotImplementedError(f"Language model {llm} not supported.")
|
86 |
+
|
87 |
+
token_mask = latent_and_others["token_mask"].detach()
|
88 |
+
tokens = latent_and_others["tokens"].detach()
|
89 |
+
captions = batch_prompts
|
90 |
+
|
91 |
+
return context, token_mask, tokens, captions
|
92 |
+
|
93 |
+
# Load configuration and initialize models.
|
94 |
+
config_dict = t2i_512px_clip_dimr.get_config()
|
95 |
+
config = ml_collections.ConfigDict(config_dict)
|
96 |
+
|
97 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
98 |
+
logging.info(f"Using device: {device}")
|
99 |
+
|
100 |
+
# Freeze configuration.
|
101 |
+
config = ml_collections.FrozenConfigDict(config)
|
102 |
+
|
103 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
104 |
+
MAX_SEED = np.iinfo(np.int32).max
|
105 |
+
MAX_IMAGE_SIZE = 1024 # Currently not used.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
# Load the main diffusion model.
|
108 |
+
repo_id = "QHL067/CrossFlow"
|
109 |
+
filename = "pretrained_models/t2i_512px_clip_dimr.pth"
|
110 |
+
checkpoint_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
111 |
+
nnet = utils.get_nnet(**config.nnet)
|
112 |
+
nnet = nnet.to(device)
|
113 |
+
state_dict = torch.load(checkpoint_path, map_location=device)
|
114 |
+
nnet.load_state_dict(state_dict)
|
115 |
+
nnet.eval()
|
116 |
|
117 |
+
# Initialize text model.
|
118 |
+
llm = "clip"
|
119 |
+
clip = FrozenCLIPEmbedder()
|
120 |
+
clip.eval()
|
121 |
+
clip.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
# Load autoencoder.
|
124 |
+
autoencoder = libs.autoencoder.get_model(**config.autoencoder)
|
125 |
+
autoencoder.to(device)
|
126 |
|
|
|
|
|
|
|
127 |
|
128 |
+
@torch.cuda.amp.autocast()
|
129 |
+
def encode(_batch: torch.Tensor) -> torch.Tensor:
|
130 |
+
"""Encode a batch of images using the autoencoder."""
|
131 |
+
return autoencoder.encode(_batch)
|
132 |
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
@torch.cuda.amp.autocast()
|
135 |
+
def decode(_batch: torch.Tensor) -> torch.Tensor:
|
136 |
+
"""Decode a batch of latent vectors using the autoencoder."""
|
137 |
+
return autoencoder.decode(_batch)
|
|
|
138 |
|
139 |
|
140 |
+
@spaces.GPU #[uncomment to use ZeroGPU]
|
141 |
def infer(
|
142 |
+
prompt1,
|
143 |
+
prompt2,
|
144 |
seed,
|
145 |
randomize_seed,
|
|
|
|
|
146 |
guidance_scale,
|
147 |
num_inference_steps,
|
148 |
+
num_of_interpolation,
|
149 |
+
save_gpu_memory=True,
|
150 |
progress=gr.Progress(track_tqdm=True),
|
151 |
):
|
152 |
if randomize_seed:
|
153 |
seed = random.randint(0, MAX_SEED)
|
154 |
|
155 |
+
torch.manual_seed(seed)
|
156 |
+
if device.type == "cuda":
|
157 |
+
torch.cuda.manual_seed_all(seed)
|
158 |
|
159 |
+
# Only support interpolation in this implementation.
|
160 |
+
prompt_dict = {"prompt_1": prompt1, "prompt_2": prompt2}
|
161 |
+
for key, value in prompt_dict.items():
|
162 |
+
assert value is not None, f"{key} must not be None."
|
163 |
+
assert num_of_interpolation >= 5, "For linear interpolation, please sample at least five images."
|
|
|
|
|
|
|
|
|
164 |
|
165 |
+
# Get text embeddings and tokens.
|
166 |
+
_context, _token_mask, _token, _caption = get_caption(
|
167 |
+
llm, clip, prompt_dict=prompt_dict, batch_size=num_of_interpolation
|
168 |
+
)
|
169 |
|
170 |
+
with torch.no_grad():
|
171 |
+
_z_gaussian = torch.randn(num_of_interpolation, *config.z_shape, device=device)
|
172 |
+
_z_x0, _mu, _log_var = nnet(
|
173 |
+
_context, text_encoder=True, shape=_z_gaussian.shape, mask=_token_mask
|
174 |
+
)
|
175 |
+
_z_init = _z_x0.reshape(_z_gaussian.shape)
|
176 |
+
|
177 |
+
# Prepare the initial latent representations based on the number of interpolations.
|
178 |
+
if num_of_interpolation == 3:
|
179 |
+
# Addition or subtraction mode.
|
180 |
+
if config.prompt_a is not None:
|
181 |
+
assert config.prompt_s is None, "Only one of prompt_a or prompt_s should be provided."
|
182 |
+
z_init_temp = _z_init[0] + _z_init[1]
|
183 |
+
elif config.prompt_s is not None:
|
184 |
+
assert config.prompt_a is None, "Only one of prompt_a or prompt_s should be provided."
|
185 |
+
z_init_temp = _z_init[0] - _z_init[1]
|
186 |
+
else:
|
187 |
+
raise NotImplementedError("Either prompt_a or prompt_s must be provided for 3-sample mode.")
|
188 |
+
mean = z_init_temp.mean()
|
189 |
+
std = z_init_temp.std()
|
190 |
+
_z_init[2] = (z_init_temp - mean) / std
|
191 |
+
|
192 |
+
elif num_of_interpolation == 4:
|
193 |
+
z_init_temp = _z_init[0] + _z_init[1] - _z_init[2]
|
194 |
+
mean = z_init_temp.mean()
|
195 |
+
std = z_init_temp.std()
|
196 |
+
_z_init[3] = (z_init_temp - mean) / std
|
197 |
+
|
198 |
+
elif num_of_interpolation >= 5:
|
199 |
+
tensor_a = _z_init[0]
|
200 |
+
tensor_b = _z_init[-1]
|
201 |
+
num_interpolations = num_of_interpolation - 2
|
202 |
+
interpolations = [
|
203 |
+
tensor_a + (tensor_b - tensor_a) * (i / (num_interpolations + 1))
|
204 |
+
for i in range(1, num_interpolations + 1)
|
205 |
+
]
|
206 |
+
_z_init = torch.stack([tensor_a] + interpolations + [tensor_b], dim=0)
|
207 |
+
|
208 |
+
else:
|
209 |
+
raise ValueError("Unsupported number of interpolations.")
|
210 |
+
|
211 |
+
assert guidance_scale > 1, "Guidance scale must be greater than 1."
|
212 |
+
|
213 |
+
has_null_indicator = hasattr(config.nnet.model_args, "cfg_indicator")
|
214 |
+
ode_solver = ODEEulerFlowMatchingSolver(
|
215 |
+
nnet,
|
216 |
+
bdv_model_fn=None,
|
217 |
+
step_size_type="step_in_dsigma",
|
218 |
+
guidance_scale=guidance_scale,
|
219 |
+
)
|
220 |
+
_z, _ = ode_solver.sample(
|
221 |
+
x_T=_z_init,
|
222 |
+
batch_size=num_of_interpolation,
|
223 |
+
sample_steps=num_inference_steps,
|
224 |
+
unconditional_guidance_scale=guidance_scale,
|
225 |
+
has_null_indicator=has_null_indicator,
|
226 |
+
)
|
227 |
+
|
228 |
+
if save_gpu_memory:
|
229 |
+
image_unprocessed = batch_decode(_z, decode)
|
230 |
+
else:
|
231 |
+
image_unprocessed = decode(_z)
|
232 |
+
|
233 |
+
samples = unpreprocess(image_unprocessed).contiguous()[0]
|
234 |
+
|
235 |
+
# return samples, seed
|
236 |
+
return seed
|
237 |
|
238 |
|
239 |
+
# examples = [
|
240 |
+
# "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
241 |
+
# "An astronaut riding a green horse",
|
242 |
+
# "A delicious ceviche cheesecake slice",
|
243 |
+
# ]
|
244 |
+
|
245 |
examples = [
|
246 |
+
["A dog cooking dinner in the kitchen", "An orange cat wearing sunglasses on a ship"],
|
|
|
|
|
247 |
]
|
248 |
|
249 |
css = """
|
|
|
255 |
|
256 |
with gr.Blocks(css=css) as demo:
|
257 |
with gr.Column(elem_id="col-container"):
|
258 |
+
gr.Markdown(" # CrossFlow")
|
259 |
+
gr.Markdown(" CrossFlow directly transforms text representations into images for text-to-image generation, enabling interpolation in the input text latent space.")
|
260 |
|
261 |
with gr.Row():
|
262 |
+
prompt1 = gr.Text(
|
263 |
+
label="Prompt_1",
|
264 |
show_label=False,
|
265 |
max_lines=1,
|
266 |
+
placeholder="Enter your prompt for the first image",
|
267 |
+
container=False,
|
268 |
+
)
|
269 |
+
|
270 |
+
with gr.Row():
|
271 |
+
prompt2 = gr.Text(
|
272 |
+
label="Prompt_2",
|
273 |
+
show_label=False,
|
274 |
+
max_lines=1,
|
275 |
+
placeholder="Enter your prompt for the second image",
|
276 |
container=False,
|
277 |
)
|
278 |
|
279 |
+
with gr.Row():
|
280 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
281 |
|
282 |
result = gr.Image(label="Result", show_label=False)
|
283 |
|
284 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
seed = gr.Slider(
|
286 |
label="Seed",
|
287 |
minimum=0,
|
|
|
292 |
|
293 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
294 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
with gr.Row():
|
296 |
guidance_scale = gr.Slider(
|
297 |
label="Guidance scale",
|
298 |
minimum=0.0,
|
299 |
maximum=10.0,
|
300 |
step=0.1,
|
301 |
+
value=7.0, # Replace with defaults that work for your model
|
302 |
)
|
303 |
+
with gr.Row():
|
304 |
num_inference_steps = gr.Slider(
|
305 |
label="Number of inference steps",
|
306 |
minimum=1,
|
307 |
maximum=50,
|
308 |
step=1,
|
309 |
+
value=50, # Replace with defaults that work for your model
|
310 |
+
)
|
311 |
+
with gr.Row():
|
312 |
+
num_of_interpolation = gr.Slider(
|
313 |
+
label="Number of images for interpolation",
|
314 |
+
minimum=5,
|
315 |
+
maximum=50,
|
316 |
+
step=1,
|
317 |
+
value=10, # Replace with defaults that work for your model
|
318 |
)
|
319 |
|
320 |
+
gr.Examples(examples=examples, inputs=[prompt1, prompt2])
|
321 |
gr.on(
|
322 |
+
triggers=[run_button.click, prompt1.submit, prompt2.submit],
|
323 |
fn=infer,
|
324 |
inputs=[
|
325 |
+
prompt1,
|
326 |
+
prompt2,
|
327 |
seed,
|
328 |
randomize_seed,
|
|
|
|
|
329 |
guidance_scale,
|
330 |
num_inference_steps,
|
331 |
+
num_of_interpolation,
|
332 |
],
|
333 |
+
# outputs=[result, seed],
|
334 |
+
outputs=[seed],
|
335 |
)
|
336 |
|
337 |
if __name__ == "__main__":
|
338 |
+
demo.launch()
|