add
Browse files
app.py
CHANGED
@@ -277,7 +277,7 @@ def infer_tab2(prompt1, prompt2, seed, randomize_seed, guidance_scale, num_infer
|
|
277 |
default_interpolation = 3
|
278 |
return infer(prompt1, prompt2, seed, randomize_seed, guidance_scale, num_inference_steps, default_interpolation, operation_mode)
|
279 |
|
280 |
-
|
281 |
["A robot cooking dinner in the kitchen", "An orange cat wearing sunglasses on a ship"],
|
282 |
]
|
283 |
|
@@ -452,12 +452,12 @@ css = """
|
|
452 |
# )
|
453 |
|
454 |
with gr.Blocks(css=css) as demo:
|
|
|
|
|
|
|
455 |
with gr.Tabs():
|
456 |
# --- Tab 1: Interpolation Mode (no operation_mode) ---
|
457 |
-
gr.
|
458 |
-
gr.Markdown("[CrossFlow](https://cross-flow.github.io/) directly transforms text representations into images for text-to-image generation, without the need for both the noise distribution and conditioning mechanism.")
|
459 |
-
gr.Markdown("This direct mapping enables meaningful 'Linear Interpolation' and 'Arithmetic Operations' in the text latent space, as demonstrated here.")
|
460 |
-
with gr.Tab("## Linear Interpolation"):
|
461 |
gr.Markdown("This demo uses 256px images, 25 sampling steps (instead of 50), and 10 interpolations (instead of 50) to conserve GPU memory. For better results, see the original [code](https://github.com/qihao067/CrossFlow). (You may adjust them in Advanced Settings, but doing so may trigger OOM errors.)")
|
462 |
|
463 |
prompt1_tab1 = gr.Text(placeholder="Prompt for first image", label="Prompt 1")
|
@@ -486,9 +486,11 @@ with gr.Blocks(css=css) as demo:
|
|
486 |
],
|
487 |
outputs=[first_image_output_tab1, last_image_output_tab1, gif_output_tab1, seed_tab1]
|
488 |
)
|
|
|
|
|
489 |
|
490 |
# --- Tab 2: Operation Mode (no num_of_interpolation) ---
|
491 |
-
with gr.Tab("
|
492 |
gr.Markdown("This demo only supports addition or subtraction between two text latents ('Prompt_1 + Prompt_2' or 'Prompt_1 - Prompt_2'). For the other arithmetic operations, see the original [code](https://github.com/qihao067/CrossFlow).")
|
493 |
|
494 |
prompt1_tab2 = gr.Text(placeholder="Prompt for first image", label="Prompt 1")
|
|
|
277 |
default_interpolation = 3
|
278 |
return infer(prompt1, prompt2, seed, randomize_seed, guidance_scale, num_inference_steps, default_interpolation, operation_mode)
|
279 |
|
280 |
+
examples_1 = [
|
281 |
["A robot cooking dinner in the kitchen", "An orange cat wearing sunglasses on a ship"],
|
282 |
]
|
283 |
|
|
|
452 |
# )
|
453 |
|
454 |
with gr.Blocks(css=css) as demo:
|
455 |
+
gr.Markdown("# CrossFlow")
|
456 |
+
gr.Markdown("[CrossFlow](https://cross-flow.github.io/) directly transforms text representations into images for text-to-image generation, without the need for both the noise distribution and conditioning mechanism.")
|
457 |
+
gr.Markdown("This direct mapping enables meaningful 'Linear Interpolation' and 'Arithmetic Operations' in the text latent space, as demonstrated here.")
|
458 |
with gr.Tabs():
|
459 |
# --- Tab 1: Interpolation Mode (no operation_mode) ---
|
460 |
+
with gr.Tab("[Linear Interpolation]"):
|
|
|
|
|
|
|
461 |
gr.Markdown("This demo uses 256px images, 25 sampling steps (instead of 50), and 10 interpolations (instead of 50) to conserve GPU memory. For better results, see the original [code](https://github.com/qihao067/CrossFlow). (You may adjust them in Advanced Settings, but doing so may trigger OOM errors.)")
|
462 |
|
463 |
prompt1_tab1 = gr.Text(placeholder="Prompt for first image", label="Prompt 1")
|
|
|
486 |
],
|
487 |
outputs=[first_image_output_tab1, last_image_output_tab1, gif_output_tab1, seed_tab1]
|
488 |
)
|
489 |
+
|
490 |
+
gr.Examples(examples=examples_1, inputs=[prompt1, prompt2])
|
491 |
|
492 |
# --- Tab 2: Operation Mode (no num_of_interpolation) ---
|
493 |
+
with gr.Tab("[Arithmetic Operations]"):
|
494 |
gr.Markdown("This demo only supports addition or subtraction between two text latents ('Prompt_1 + Prompt_2' or 'Prompt_1 - Prompt_2'). For the other arithmetic operations, see the original [code](https://github.com/qihao067/CrossFlow).")
|
495 |
|
496 |
prompt1_tab2 = gr.Text(placeholder="Prompt for first image", label="Prompt 1")
|