save image
Browse files
app.py
CHANGED
@@ -16,6 +16,7 @@ import numpy as np
|
|
16 |
import torch
|
17 |
import torch.nn.functional as F
|
18 |
from torchvision.utils import save_image
|
|
|
19 |
from huggingface_hub import hf_hub_download
|
20 |
|
21 |
from absl import logging
|
@@ -230,10 +231,13 @@ def infer(
|
|
230 |
else:
|
231 |
image_unprocessed = decode(_z)
|
232 |
|
233 |
-
samples = unpreprocess(image_unprocessed).contiguous()
|
234 |
|
235 |
-
|
236 |
-
|
|
|
|
|
|
|
237 |
|
238 |
|
239 |
# examples = [
|
@@ -310,7 +314,7 @@ with gr.Blocks(css=css) as demo:
|
|
310 |
)
|
311 |
with gr.Row():
|
312 |
num_of_interpolation = gr.Slider(
|
313 |
-
label="Number of images for interpolation",
|
314 |
minimum=5,
|
315 |
maximum=50,
|
316 |
step=1,
|
@@ -330,8 +334,7 @@ with gr.Blocks(css=css) as demo:
|
|
330 |
num_inference_steps,
|
331 |
num_of_interpolation,
|
332 |
],
|
333 |
-
|
334 |
-
outputs=[seed],
|
335 |
)
|
336 |
|
337 |
if __name__ == "__main__":
|
|
|
16 |
import torch
|
17 |
import torch.nn.functional as F
|
18 |
from torchvision.utils import save_image
|
19 |
+
from torchvision.transforms import ToPILImage
|
20 |
from huggingface_hub import hf_hub_download
|
21 |
|
22 |
from absl import logging
|
|
|
231 |
else:
|
232 |
image_unprocessed = decode(_z)
|
233 |
|
234 |
+
samples = unpreprocess(image_unprocessed).contiguous()
|
235 |
|
236 |
+
to_pil = ToPILImage()
|
237 |
+
|
238 |
+
pil_image = to_pil(sample[0])
|
239 |
+
|
240 |
+
return pil_image, seed
|
241 |
|
242 |
|
243 |
# examples = [
|
|
|
314 |
)
|
315 |
with gr.Row():
|
316 |
num_of_interpolation = gr.Slider(
|
317 |
+
label="Number of images for interpolation - More images yield smoother transitions but require more resources and may fail.",
|
318 |
minimum=5,
|
319 |
maximum=50,
|
320 |
step=1,
|
|
|
334 |
num_inference_steps,
|
335 |
num_of_interpolation,
|
336 |
],
|
337 |
+
outputs=[result, seed],
|
|
|
338 |
)
|
339 |
|
340 |
if __name__ == "__main__":
|