Spaces:
Runtime error
Runtime error
File size: 1,268 Bytes
ec7d971 623c9e7 ec7d971 623c9e7 ec7d971 191e2cd ec7d971 adc05de ec7d971 adc05de ec7d971 623c9e7 ec7d971 1ee9cdc ec7d971 623c9e7 ec7d971 623c9e7 ec7d971 623c9e7 ec7d971 623c9e7 ec7d971 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
import gradio as gr
from PIL import Image
# Load the pre-trained Pix2Struct model and processor
model_name = "google/pix2struct-mathqa-base"
model = Pix2StructForConditionalGeneration.from_pretrained(model_name)
processor = Pix2StructProcessor.from_pretrained(model_name)
# Function to solve handwritten math problems
def solve_math_problem(image):
# Preprocess the image
inputs = processor(images=image, text="Solve the math problem:", return_tensors="pt")
# Generate the solution
predictions = model.generate(**inputs, max_new_tokens=100)
# Decode the output
solution = processor.decode(predictions[0], skip_special_tokens=True)
return solution
# Gradio interface
demo = gr.Interface(
fn=solve_math_problem,
inputs=gr.Image(type="pil", label="Upload Handwritten Math Problem"),
outputs=gr.Textbox(label="Solution"),
title="Handwritten Math Problem Solver",
description="Upload an image of a handwritten math problem, and the model will solve it.",
examples=[
["example1.jpg"], # Add example images
["example2.jpg"]
],
theme="soft"
)
# Launch the app
if __name__ == "__main__":
demo.launch() |