Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,14 +2,27 @@ from transformers import pipeline, AutoModelForSequenceClassification, AutoToken
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from concurrent.futures import ThreadPoolExecutor
|
|
|
5 |
|
6 |
-
#
|
|
|
|
|
|
|
|
|
|
|
7 |
def load_quantized_model(model_name):
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
# Load models
|
13 |
with ThreadPoolExecutor() as executor:
|
14 |
sentiment_future = executor.submit(load_quantized_model, "cardiffnlp/twitter-roberta-base-sentiment")
|
15 |
emotion_future = executor.submit(load_quantized_model, "bhadresh-savani/bert-base-uncased-emotion")
|
@@ -17,43 +30,46 @@ with ThreadPoolExecutor() as executor:
|
|
17 |
sentiment_pipeline = sentiment_future.result()
|
18 |
emotion_pipeline = emotion_future.result()
|
19 |
|
20 |
-
# Cache recent predictions to avoid recomputation
|
21 |
-
CACHE_SIZE = 100
|
22 |
-
prediction_cache = {}
|
23 |
-
|
24 |
def analyze_text(text):
|
25 |
-
# Check cache first
|
26 |
-
|
27 |
-
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
"
|
41 |
-
}
|
42 |
|
43 |
-
# Update cache
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
47 |
|
48 |
return result
|
49 |
|
50 |
-
#
|
51 |
-
|
|
|
|
|
52 |
fn=analyze_text,
|
53 |
inputs=gr.Textbox(placeholder="Enter your text here...", label="Input Text"),
|
54 |
-
outputs=gr.
|
55 |
title="🚀 Fast Sentiment & Emotion Analysis",
|
56 |
-
description="
|
57 |
examples=[
|
58 |
["I'm thrilled to start this new adventure!"],
|
59 |
["This situation is making me really frustrated."],
|
@@ -63,8 +79,8 @@ demo = gr.Interface(
|
|
63 |
allow_flagging="never"
|
64 |
)
|
65 |
|
66 |
-
# Warm up models with sample input
|
67 |
-
analyze_text("Warming up models...")
|
68 |
|
69 |
if __name__ == "__main__":
|
70 |
-
demo.launch()
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from concurrent.futures import ThreadPoolExecutor
|
5 |
+
from threading import Lock
|
6 |
|
7 |
+
# Global cache settings and lock for thread-safety
|
8 |
+
CACHE_SIZE = 100
|
9 |
+
prediction_cache = {}
|
10 |
+
cache_lock = Lock()
|
11 |
+
|
12 |
+
# Function to load models with 8-bit quantization
|
13 |
def load_quantized_model(model_name):
|
14 |
+
try:
|
15 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, load_in_8bit=True)
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
+
device = 0 if torch.cuda.is_available() else -1
|
18 |
+
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, device=device)
|
19 |
+
print(f"Loaded model: {model_name}")
|
20 |
+
return pipe
|
21 |
+
except Exception as e:
|
22 |
+
print(f"Error loading model '{model_name}': {e}")
|
23 |
+
raise e
|
24 |
|
25 |
+
# Load both models concurrently at startup
|
26 |
with ThreadPoolExecutor() as executor:
|
27 |
sentiment_future = executor.submit(load_quantized_model, "cardiffnlp/twitter-roberta-base-sentiment")
|
28 |
emotion_future = executor.submit(load_quantized_model, "bhadresh-savani/bert-base-uncased-emotion")
|
|
|
30 |
sentiment_pipeline = sentiment_future.result()
|
31 |
emotion_pipeline = emotion_future.result()
|
32 |
|
|
|
|
|
|
|
|
|
33 |
def analyze_text(text):
|
34 |
+
# Check cache first (using lock for thread-safety)
|
35 |
+
with cache_lock:
|
36 |
+
if text in prediction_cache:
|
37 |
+
return prediction_cache[text]
|
38 |
|
39 |
+
try:
|
40 |
+
# Execute both model inferences in parallel
|
41 |
+
with ThreadPoolExecutor() as executor:
|
42 |
+
sentiment_future = executor.submit(sentiment_pipeline, text)
|
43 |
+
emotion_future = executor.submit(emotion_pipeline, text)
|
44 |
+
|
45 |
+
sentiment_result = sentiment_future.result()[0]
|
46 |
+
emotion_result = emotion_future.result()[0]
|
47 |
|
48 |
+
# Prepare a clear, rounded output
|
49 |
+
result = {
|
50 |
+
"Sentiment": {sentiment_result['label']: round(sentiment_result['score'], 4)},
|
51 |
+
"Emotion": {emotion_result['label']: round(emotion_result['score'], 4)}
|
52 |
+
}
|
53 |
+
except Exception as e:
|
54 |
+
result = {"error": str(e)}
|
|
|
55 |
|
56 |
+
# Update cache with lock protection
|
57 |
+
with cache_lock:
|
58 |
+
if len(prediction_cache) >= CACHE_SIZE:
|
59 |
+
prediction_cache.pop(next(iter(prediction_cache)))
|
60 |
+
prediction_cache[text] = result
|
61 |
|
62 |
return result
|
63 |
|
64 |
+
# Gradio interface: using gr.JSON to display structured output
|
65 |
+
|
66 |
+
|
67 |
+
demo = gr.Interface(
|
68 |
fn=analyze_text,
|
69 |
inputs=gr.Textbox(placeholder="Enter your text here...", label="Input Text"),
|
70 |
+
outputs=gr.JSON(label="Analysis Results"),
|
71 |
title="🚀 Fast Sentiment & Emotion Analysis",
|
72 |
+
description="An optimized application using 8-bit quantized models and parallel processing for fast inference.",
|
73 |
examples=[
|
74 |
["I'm thrilled to start this new adventure!"],
|
75 |
["This situation is making me really frustrated."],
|
|
|
79 |
allow_flagging="never"
|
80 |
)
|
81 |
|
82 |
+
# Warm up the models with a sample input to reduce first-call latency
|
83 |
+
_ = analyze_text("Warming up models...")
|
84 |
|
85 |
if __name__ == "__main__":
|
86 |
+
demo.launch()
|