Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,99 +1,38 @@
|
|
1 |
-
from transformers import
|
2 |
import gradio as gr
|
3 |
-
import
|
4 |
-
from concurrent.futures import ThreadPoolExecutor
|
5 |
-
from threading import Lock
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
"
|
16 |
-
"LABEL_2": "positive"
|
17 |
-
}
|
18 |
-
|
19 |
-
def load_model(model_name):
|
20 |
-
"""
|
21 |
-
Loads the model with 8-bit quantization if a GPU is available;
|
22 |
-
otherwise, loads the full model.
|
23 |
-
"""
|
24 |
-
if torch.cuda.is_available():
|
25 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
26 |
-
model_name, load_in_8bit=True, device_map="auto"
|
27 |
-
)
|
28 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
29 |
-
device = 0 # GPU index
|
30 |
-
else:
|
31 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
32 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
33 |
-
device = -1
|
34 |
-
return pipeline("text-classification", model=model, tokenizer=tokenizer, device=device)
|
35 |
-
|
36 |
-
# Load both models concurrently at startup.
|
37 |
-
with ThreadPoolExecutor() as executor:
|
38 |
-
sentiment_future = executor.submit(load_model, "cardiffnlp/twitter-roberta-base-sentiment")
|
39 |
-
emotion_future = executor.submit(load_model, "bhadresh-savani/bert-base-uncased-emotion")
|
40 |
-
|
41 |
-
sentiment_pipeline = sentiment_future.result()
|
42 |
-
emotion_pipeline = emotion_future.result()
|
43 |
-
|
44 |
-
def analyze_text(text):
|
45 |
-
# Check cache first (thread-safe)
|
46 |
-
with cache_lock:
|
47 |
-
if text in prediction_cache:
|
48 |
-
return prediction_cache[text]
|
49 |
-
|
50 |
-
try:
|
51 |
-
# Run both model inferences in parallel.
|
52 |
-
with ThreadPoolExecutor() as executor:
|
53 |
-
future_sentiment = executor.submit(sentiment_pipeline, text)
|
54 |
-
future_emotion = executor.submit(emotion_pipeline, text)
|
55 |
-
sentiment_result = future_sentiment.result()[0]
|
56 |
-
emotion_result = future_emotion.result()[0]
|
57 |
-
|
58 |
-
# Remap the sentiment label to a human-readable format if available.
|
59 |
-
raw_sentiment_label = sentiment_result.get("label", "")
|
60 |
-
sentiment_label = SENTIMENT_LABEL_MAPPING.get(raw_sentiment_label, raw_sentiment_label)
|
61 |
-
|
62 |
-
# Format the output with rounded scores.
|
63 |
-
result = {
|
64 |
-
"Sentiment": {sentiment_label: round(sentiment_result['score'], 4)},
|
65 |
-
"Emotion": {emotion_result['label']: round(emotion_result['score'], 4)}
|
66 |
-
}
|
67 |
-
except Exception as e:
|
68 |
-
result = {"error": str(e)}
|
69 |
|
70 |
-
#
|
71 |
-
|
72 |
-
if len(prediction_cache) >= CACHE_SIZE:
|
73 |
-
prediction_cache.pop(next(iter(prediction_cache)))
|
74 |
-
prediction_cache[text] = result
|
75 |
|
76 |
-
|
|
|
|
|
77 |
|
78 |
-
#
|
79 |
demo = gr.Interface(
|
80 |
-
fn=
|
81 |
-
inputs=gr.
|
82 |
-
outputs=gr.
|
83 |
-
title="
|
84 |
-
description="
|
85 |
examples=[
|
86 |
-
["
|
87 |
-
["
|
88 |
-
["I feel so heartbroken and lost."]
|
89 |
],
|
90 |
-
theme="soft"
|
91 |
-
allow_flagging="never"
|
92 |
)
|
93 |
|
94 |
-
#
|
95 |
-
_ = analyze_text("Warming up models...")
|
96 |
-
|
97 |
if __name__ == "__main__":
|
98 |
-
|
99 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
1 |
+
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
|
2 |
import gradio as gr
|
3 |
+
from PIL import Image
|
|
|
|
|
4 |
|
5 |
+
# Load the pre-trained Pix2Struct model and processor
|
6 |
+
model_name = "google/pix2struct-mathqa-base"
|
7 |
+
model = Pix2StructForConditionalGeneration.from_pretrained(model_name)
|
8 |
+
processor = Pix2StructProcessor.from_pretrained(model_name)
|
9 |
|
10 |
+
# Function to solve handwritten math problems
|
11 |
+
def solve_math_problem(image):
|
12 |
+
# Preprocess the image
|
13 |
+
inputs = processor(images=image, text="Solve the math problem:", return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Generate the solution
|
16 |
+
predictions = model.generate(**inputs, max_new_tokens=100)
|
|
|
|
|
|
|
17 |
|
18 |
+
# Decode the output
|
19 |
+
solution = processor.decode(predictions[0], skip_special_tokens=True)
|
20 |
+
return solution
|
21 |
|
22 |
+
# Gradio interface
|
23 |
demo = gr.Interface(
|
24 |
+
fn=solve_math_problem,
|
25 |
+
inputs=gr.Image(type="pil", label="Upload Handwritten Math Problem"),
|
26 |
+
outputs=gr.Textbox(label="Solution"),
|
27 |
+
title="Handwritten Math Problem Solver",
|
28 |
+
description="Upload an image of a handwritten math problem, and the model will solve it.",
|
29 |
examples=[
|
30 |
+
["example1.jpg"], # Add example images
|
31 |
+
["example2.jpg"]
|
|
|
32 |
],
|
33 |
+
theme="soft"
|
|
|
34 |
)
|
35 |
|
36 |
+
# Launch the app
|
|
|
|
|
37 |
if __name__ == "__main__":
|
38 |
+
demo.launch()
|
|