Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,33 +4,36 @@ import torch
|
|
4 |
from concurrent.futures import ThreadPoolExecutor
|
5 |
from threading import Lock
|
6 |
|
7 |
-
# Global cache and
|
8 |
CACHE_SIZE = 100
|
9 |
prediction_cache = {}
|
10 |
cache_lock = Lock()
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
def load_model(model_name):
|
13 |
"""
|
14 |
-
Loads the model with 8-bit quantization if a GPU is available
|
15 |
-
|
16 |
"""
|
17 |
if torch.cuda.is_available():
|
18 |
-
# Use 8-bit quantization and auto device mapping for GPU inference.
|
19 |
model = AutoModelForSequenceClassification.from_pretrained(
|
20 |
model_name, load_in_8bit=True, device_map="auto"
|
21 |
)
|
22 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
23 |
device = 0 # GPU index
|
24 |
else:
|
25 |
-
# CPU fallback: do not use quantization.
|
26 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
27 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
28 |
device = -1
|
29 |
-
|
30 |
return pipeline("text-classification", model=model, tokenizer=tokenizer, device=device)
|
31 |
|
32 |
-
# Load both models concurrently
|
33 |
-
|
34 |
with ThreadPoolExecutor() as executor:
|
35 |
sentiment_future = executor.submit(load_model, "cardiffnlp/twitter-roberta-base-sentiment")
|
36 |
emotion_future = executor.submit(load_model, "bhadresh-savani/bert-base-uncased-emotion")
|
@@ -52,15 +55,19 @@ def analyze_text(text):
|
|
52 |
sentiment_result = future_sentiment.result()[0]
|
53 |
emotion_result = future_emotion.result()[0]
|
54 |
|
|
|
|
|
|
|
|
|
55 |
# Format the output with rounded scores.
|
56 |
result = {
|
57 |
-
"Sentiment": {
|
58 |
"Emotion": {emotion_result['label']: round(emotion_result['score'], 4)}
|
59 |
}
|
60 |
except Exception as e:
|
61 |
result = {"error": str(e)}
|
62 |
|
63 |
-
# Update cache
|
64 |
with cache_lock:
|
65 |
if len(prediction_cache) >= CACHE_SIZE:
|
66 |
prediction_cache.pop(next(iter(prediction_cache)))
|
@@ -74,7 +81,7 @@ demo = gr.Interface(
|
|
74 |
inputs=gr.Textbox(placeholder="Enter your text here...", label="Input Text"),
|
75 |
outputs=gr.JSON(label="Analysis Results"),
|
76 |
title="🚀 Fast Sentiment & Emotion Analysis",
|
77 |
-
description="
|
78 |
examples=[
|
79 |
["I'm thrilled to start this new adventure!"],
|
80 |
["This situation is making me really frustrated."],
|
@@ -84,9 +91,9 @@ demo = gr.Interface(
|
|
84 |
allow_flagging="never"
|
85 |
)
|
86 |
|
87 |
-
# Warm up the models
|
88 |
_ = analyze_text("Warming up models...")
|
89 |
|
90 |
if __name__ == "__main__":
|
91 |
-
#
|
92 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
4 |
from concurrent.futures import ThreadPoolExecutor
|
5 |
from threading import Lock
|
6 |
|
7 |
+
# Global cache and lock for thread-safety
|
8 |
CACHE_SIZE = 100
|
9 |
prediction_cache = {}
|
10 |
cache_lock = Lock()
|
11 |
|
12 |
+
# Mapping for sentiment labels from cardiffnlp/twitter-roberta-base-sentiment
|
13 |
+
SENTIMENT_LABEL_MAPPING = {
|
14 |
+
"LABEL_0": "negative",
|
15 |
+
"LABEL_1": "neutral",
|
16 |
+
"LABEL_2": "positive"
|
17 |
+
}
|
18 |
+
|
19 |
def load_model(model_name):
|
20 |
"""
|
21 |
+
Loads the model with 8-bit quantization if a GPU is available;
|
22 |
+
otherwise, loads the full model.
|
23 |
"""
|
24 |
if torch.cuda.is_available():
|
|
|
25 |
model = AutoModelForSequenceClassification.from_pretrained(
|
26 |
model_name, load_in_8bit=True, device_map="auto"
|
27 |
)
|
28 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
29 |
device = 0 # GPU index
|
30 |
else:
|
|
|
31 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
32 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
33 |
device = -1
|
|
|
34 |
return pipeline("text-classification", model=model, tokenizer=tokenizer, device=device)
|
35 |
|
36 |
+
# Load both models concurrently at startup.
|
|
|
37 |
with ThreadPoolExecutor() as executor:
|
38 |
sentiment_future = executor.submit(load_model, "cardiffnlp/twitter-roberta-base-sentiment")
|
39 |
emotion_future = executor.submit(load_model, "bhadresh-savani/bert-base-uncased-emotion")
|
|
|
55 |
sentiment_result = future_sentiment.result()[0]
|
56 |
emotion_result = future_emotion.result()[0]
|
57 |
|
58 |
+
# Remap the sentiment label to a human-readable format if available.
|
59 |
+
raw_sentiment_label = sentiment_result.get("label", "")
|
60 |
+
sentiment_label = SENTIMENT_LABEL_MAPPING.get(raw_sentiment_label, raw_sentiment_label)
|
61 |
+
|
62 |
# Format the output with rounded scores.
|
63 |
result = {
|
64 |
+
"Sentiment": {sentiment_label: round(sentiment_result['score'], 4)},
|
65 |
"Emotion": {emotion_result['label']: round(emotion_result['score'], 4)}
|
66 |
}
|
67 |
except Exception as e:
|
68 |
result = {"error": str(e)}
|
69 |
|
70 |
+
# Update the cache in a thread-safe manner.
|
71 |
with cache_lock:
|
72 |
if len(prediction_cache) >= CACHE_SIZE:
|
73 |
prediction_cache.pop(next(iter(prediction_cache)))
|
|
|
81 |
inputs=gr.Textbox(placeholder="Enter your text here...", label="Input Text"),
|
82 |
outputs=gr.JSON(label="Analysis Results"),
|
83 |
title="🚀 Fast Sentiment & Emotion Analysis",
|
84 |
+
description="Optimized application that remaps sentiment labels and uses parallel processing.",
|
85 |
examples=[
|
86 |
["I'm thrilled to start this new adventure!"],
|
87 |
["This situation is making me really frustrated."],
|
|
|
91 |
allow_flagging="never"
|
92 |
)
|
93 |
|
94 |
+
# Warm up the models with a sample input.
|
95 |
_ = analyze_text("Warming up models...")
|
96 |
|
97 |
if __name__ == "__main__":
|
98 |
+
# Bind to all interfaces for Hugging Face Spaces.
|
99 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|