Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,38 +1,70 @@
|
|
1 |
-
from transformers import pipeline
|
2 |
import gradio as gr
|
|
|
|
|
3 |
|
4 |
-
# Load
|
5 |
-
|
6 |
-
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
# Function to analyze sentiment and emotion
|
12 |
def analyze_text(text):
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
"
|
|
|
19 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
# Gradio interface
|
22 |
demo = gr.Interface(
|
23 |
fn=analyze_text,
|
24 |
inputs=gr.Textbox(placeholder="Enter your text here...", label="Input Text"),
|
25 |
outputs=gr.Label(label="Analysis Results"),
|
26 |
-
title="Sentiment
|
27 |
-
description="
|
28 |
examples=[
|
29 |
["I'm thrilled to start this new adventure!"],
|
30 |
["This situation is making me really frustrated."],
|
31 |
["I feel so heartbroken and lost."]
|
32 |
],
|
33 |
-
theme="soft"
|
|
|
34 |
)
|
35 |
|
36 |
-
#
|
|
|
|
|
37 |
if __name__ == "__main__":
|
38 |
demo.launch()
|
|
|
1 |
+
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
2 |
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from concurrent.futures import ThreadPoolExecutor
|
5 |
|
6 |
+
# Load models with quantization (8-bit) for faster inference
|
7 |
+
def load_quantized_model(model_name):
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, load_in_8bit=True)
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
return pipeline("text-classification", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
|
11 |
|
12 |
+
# Load models in parallel during startup
|
13 |
+
with ThreadPoolExecutor() as executor:
|
14 |
+
sentiment_future = executor.submit(load_quantized_model, "cardiffnlp/twitter-roberta-base-sentiment")
|
15 |
+
emotion_future = executor.submit(load_quantized_model, "bhadresh-savani/bert-base-uncased-emotion")
|
16 |
+
|
17 |
+
sentiment_pipeline = sentiment_future.result()
|
18 |
+
emotion_pipeline = emotion_future.result()
|
19 |
+
|
20 |
+
# Cache recent predictions to avoid recomputation
|
21 |
+
CACHE_SIZE = 100
|
22 |
+
prediction_cache = {}
|
23 |
|
|
|
24 |
def analyze_text(text):
|
25 |
+
# Check cache first
|
26 |
+
if text in prediction_cache:
|
27 |
+
return prediction_cache[text]
|
28 |
+
|
29 |
+
# Parallel model execution
|
30 |
+
with ThreadPoolExecutor() as executor:
|
31 |
+
sentiment_future = executor.submit(sentiment_pipeline, text)
|
32 |
+
emotion_future = executor.submit(emotion_pipeline, text)
|
33 |
+
|
34 |
+
sentiment_result = sentiment_future.result()[0]
|
35 |
+
emotion_result = emotion_future.result()[0]
|
36 |
|
37 |
+
# Format response
|
38 |
+
result = {
|
39 |
+
"Sentiment": {sentiment_result['label']: round(sentiment_result['score'], 4)},
|
40 |
+
"Emotion": {emotion_result['label']: round(emotion_result['score'], 4)}
|
41 |
}
|
42 |
+
|
43 |
+
# Update cache
|
44 |
+
if len(prediction_cache) >= CACHE_SIZE:
|
45 |
+
prediction_cache.pop(next(iter(prediction_cache)))
|
46 |
+
prediction_cache[text] = result
|
47 |
+
|
48 |
+
return result
|
49 |
|
50 |
+
# Optimized Gradio interface with batch processing
|
51 |
demo = gr.Interface(
|
52 |
fn=analyze_text,
|
53 |
inputs=gr.Textbox(placeholder="Enter your text here...", label="Input Text"),
|
54 |
outputs=gr.Label(label="Analysis Results"),
|
55 |
+
title="🚀 Fast Sentiment & Emotion Analysis",
|
56 |
+
description="Optimized version using quantized models and parallel processing",
|
57 |
examples=[
|
58 |
["I'm thrilled to start this new adventure!"],
|
59 |
["This situation is making me really frustrated."],
|
60 |
["I feel so heartbroken and lost."]
|
61 |
],
|
62 |
+
theme="soft",
|
63 |
+
allow_flagging="never"
|
64 |
)
|
65 |
|
66 |
+
# Warm up models with sample input
|
67 |
+
analyze_text("Warming up models...")
|
68 |
+
|
69 |
if __name__ == "__main__":
|
70 |
demo.launch()
|