File size: 14,626 Bytes
76c6b8a 94312f3 76c6b8a 94312f3 76c6b8a 94312f3 76c6b8a 94312f3 76c6b8a ef07f3f 76c6b8a ef07f3f 8e8e221 76c6b8a 8e8e221 76c6b8a ef07f3f 76c6b8a 15cef53 76c6b8a ef07f3f 8e8e221 ef07f3f 76c6b8a ef07f3f 8e8e221 ef07f3f 76c6b8a ef07f3f 76c6b8a ef07f3f 76c6b8a ef07f3f 76c6b8a ef07f3f 76c6b8a 15cef53 76c6b8a 15cef53 76c6b8a 8e8e221 c465d82 76c6b8a 8e8e221 76c6b8a 8e8e221 76c6b8a ef07f3f 76c6b8a ef07f3f 76c6b8a ef07f3f 76c6b8a 15cef53 76c6b8a ef07f3f 76c6b8a ef07f3f 8e8e221 76c6b8a 8e8e221 76c6b8a ef07f3f 76c6b8a ef07f3f 76c6b8a ef07f3f 76c6b8a 8e8e221 76c6b8a 4c6ee84 8e8e221 76c6b8a 8e8e221 76c6b8a 9a2407d 8e8e221 76c6b8a 8e8e221 76c6b8a 8e8e221 76c6b8a 9a2407d ef07f3f 9a2407d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
# Install required packages
import os
import subprocess
import sys
import importlib
import pkg_resources
def install_package(package, version=None):
package_spec = f"{package}=={version}" if version else package
print(f"Installing {package_spec}...")
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", "--no-cache-dir", package_spec])
except subprocess.CalledProcessError as e:
print(f"Failed to install {package_spec}: {e}")
raise
def ensure_package(package, version=None):
try:
if version:
pkg_resources.require(f"{package}=={version}")
else:
importlib.import_module(package)
print(f"{package} is already installed with the correct version.")
except (ImportError, pkg_resources.VersionConflict, pkg_resources.DistributionNotFound) as e:
print(f"Package requirement failed: {e}")
install_package(package, version)
# Check if running in a standard environment (not Colab/Jupyter)
if not os.path.exists("/.dockerenv") and not os.path.exists("/kaggle"):
print("Setting up environment...")
# Install packages in the correct order with compatible versions
ensure_package("numpy", "1.23.5") # Compatible with TensorFlow 2.10
ensure_package("protobuf", "3.20.3") # Critical for TensorFlow compatibility
ensure_package("tensorflow", "2.10.0") # Stable version with good compatibility
# Install core dependencies
for pkg in ["gradio", "opencv-python-headless", "matplotlib", "pillow", "pandas"]:
ensure_package(pkg)
# Install deepface last after all dependencies are set up
ensure_package("deepface")
# Now import the required modules
import gradio as gr
import json
import cv2
import numpy as np
from PIL import Image
import tempfile
import pandas as pd
import shutil
import matplotlib.pyplot as plt
# Import DeepFace after ensuring dependencies are properly installed
from deepface import DeepFace
def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
temp_dir = tempfile.mkdtemp()
img1_path = os.path.join(temp_dir, "image1.jpg")
img2_path = os.path.join(temp_dir, "image2.jpg")
if isinstance(img1, np.ndarray):
Image.fromarray(img1).save(img1_path)
else:
img1.save(img1_path)
if isinstance(img2, np.ndarray):
Image.fromarray(img2).save(img2_path)
else:
img2.save(img2_path)
try:
result = DeepFace.verify(
img1_path=img1_path,
img2_path=img2_path,
model_name=model,
distance_metric="cosine",
threshold=threshold
)
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
img1_display = cv2.imread(img1_path)
img1_display = cv2.cvtColor(img1_display, cv2.COLOR_BGR2RGB)
img2_display = cv2.imread(img2_path)
img2_display = cv2.cvtColor(img2_display, cv2.COLOR_BGR2RGB)
ax[0].imshow(img1_display)
ax[0].set_title("Image 1")
ax[0].axis("off")
ax[1].imshow(img2_display)
ax[1].set_title("Image 2")
ax[1].axis("off")
verification_result = "β
FACE MATCHED" if result["verified"] else "β FACE NOT MATCHED"
confidence = round((1 - result["distance"]) * 100, 2)
plt.suptitle(f"{verification_result}\nConfidence: {confidence}%\nDistance: {result['distance']:.4f}",
fontsize=16, fontweight='bold',
color='green' if result["verified"] else 'red')
plt.tight_layout()
os.remove(img1_path)
os.remove(img2_path)
os.rmdir(temp_dir)
return fig, json.dumps(result, indent=2)
except Exception as e:
if os.path.exists(img1_path):
os.remove(img1_path)
if os.path.exists(img2_path):
os.remove(img2_path)
if os.path.exists(temp_dir):
os.rmdir(temp_dir)
error_msg = f"Error: {str(e)}"
if "No face detected" in str(e):
error_msg = "No face detected in one or both images. Please try different images."
return None, error_msg
def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"):
temp_dir = tempfile.mkdtemp()
query_path = os.path.join(temp_dir, "query.jpg")
if isinstance(query_img, np.ndarray):
Image.fromarray(query_img).save(query_path)
else:
query_img.save(query_path)
if isinstance(db_folder, str):
db_path = db_folder
else:
db_path = os.path.join(temp_dir, "db")
os.makedirs(db_path, exist_ok=True)
for i, file in enumerate(db_folder):
file_ext = os.path.splitext(file.name)[1]
shutil.copy(file.name, os.path.join(db_path, f"image_{i}{file_ext}"))
try:
dfs = DeepFace.find(
img_path=query_path,
db_path=db_path,
model_name=model,
distance_metric="cosine",
threshold=threshold
)
if isinstance(dfs, list):
if len(dfs) == 0:
return None, "No matching faces found in the database."
df = dfs[0]
else:
df = dfs
if df.empty:
return None, "No matching faces found in the database."
df = df.sort_values(by=["distance"])
num_matches = min(4, len(df))
fig, axes = plt.subplots(1, num_matches + 1, figsize=(15, 5))
query_display = cv2.imread(query_path)
query_display = cv2.cvtColor(query_display, cv2.COLOR_BGR2RGB)
axes[0].imshow(query_display)
axes[0].set_title("Query Image")
axes[0].axis("off")
for i in range(num_matches):
match_path = df.iloc[i]["identity"]
distance = df.iloc[i]["distance"]
confidence = round((1 - distance) * 100, 2)
match_img = cv2.imread(match_path)
match_img = cv2.cvtColor(match_img, cv2.COLOR_BGR2RGB)
axes[i+1].imshow(match_img)
axes[i+1].set_title(f"Match #{i+1}\nConfidence: {confidence}%")
axes[i+1].axis("off")
plt.suptitle(f"Found {len(df)} matching faces", fontsize=16, fontweight='bold')
plt.tight_layout()
results = df[["identity", "distance"]].copy()
results["confidence"] = (1 - results["distance"]) * 100
results["confidence"] = results["confidence"].round(2)
results = results.rename(columns={"identity": "Image Path"})
os.remove(query_path)
if not isinstance(db_folder, str):
shutil.rmtree(db_path)
return fig, results.to_dict('records')
except Exception as e:
if os.path.exists(query_path):
os.remove(query_path)
error_msg = f"Error: {str(e)}"
if "No face detected" in str(e):
error_msg = "No face detected in the query image. Please try a different image."
return None, error_msg
def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
temp_dir = tempfile.mkdtemp()
img_path = os.path.join(temp_dir, "analyze.jpg")
if isinstance(img, np.ndarray):
Image.fromarray(img).save(img_path)
else:
img.save(img_path)
try:
results = DeepFace.analyze(
img_path=img_path,
actions=actions,
enforce_detection=True,
detector_backend='opencv'
)
if isinstance(results, list):
num_faces = len(results)
else:
num_faces = 1
results = [results]
fig = plt.figure(figsize=(14, 7))
img_display = cv2.imread(img_path)
img_display = cv2.cvtColor(img_display, cv2.COLOR_BGR2RGB)
main_ax = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
main_ax.imshow(img_display)
main_ax.set_title(f"Analyzed Image ({num_faces} face{'s' if num_faces > 1 else ''} detected)")
main_ax.axis('off')
for i, face_result in enumerate(results):
if i >= 4:
break
age = face_result.get('age', 'N/A')
gender = face_result.get('dominant_gender', 'N/A')
race = face_result.get('dominant_race', 'N/A')
emotion = face_result.get('dominant_emotion', 'N/A')
gender_conf = 'N/A'
if 'gender' in face_result and isinstance(face_result['gender'], dict):
for g, conf in face_result['gender'].items():
if g.lower() == gender.lower():
gender_conf = f"{conf:.1f}%"
break
race_conf = 'N/A'
if 'race' in face_result and isinstance(face_result['race'], dict):
for r, conf in face_result['race'].items():
if r.lower() == race.lower():
race_conf = f"{conf:.1f}%"
break
emotion_conf = 'N/A'
if 'emotion' in face_result and isinstance(face_result['emotion'], dict):
for e, conf in face_result['emotion'].items():
if e.lower() == emotion.lower():
emotion_conf = f"{conf:.1f}%"
break
ax = plt.subplot2grid((2, 4), (0 if i < 2 else 1, 2 + (i % 2)))
text = (
f"Face #{i+1}\n\n"
f"Age: {age}\n\n"
f"Gender: {gender} ({gender_conf})\n\n"
f"Race: {race} ({race_conf})\n\n"
f"Emotion: {emotion} ({emotion_conf})"
)
ax.text(0.5, 0.5, text, ha='center', va='center', fontsize=11)
ax.axis('off')
plt.tight_layout()
os.remove(img_path)
os.rmdir(temp_dir)
formatted_results = []
for i, res in enumerate(results[:8]):
face_data = {
"face_number": i+1,
"age": res.get("age", "N/A"),
"gender": {
"dominant": res.get("dominant_gender", "N/A"),
"confidence": res.get("gender", {})
},
"race": {
"dominant": res.get("dominant_race", "N/A"),
"confidence": res.get("race", {})
},
"emotion": {
"dominant": res.get("dominant_emotion", "N/A"),
"confidence": res.get("emotion", {})
}
}
formatted_results.append(face_data)
return fig, formatted_results
except Exception as e:
if os.path.exists(img_path):
os.remove(img_path)
if os.path.exists(temp_dir):
os.rmdir(temp_dir)
error_msg = f"Error: {str(e)}"
if "No face detected" in str(e):
error_msg = "No face detected in the image. Please try a different image."
return None, error_msg
with gr.Blocks(title="Complete Face Recognition Tool", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π Complete Face Recognition Tool
This tool provides three face recognition features:
- **Verify Faces**: Compare two specific images to check if they contain the same person
- **Find Faces**: Search for matching faces in a database/folder
- **Analyze Face**: Determine age, gender, race, and emotion from a facial image
""")
with gr.Tabs():
with gr.TabItem("Verify Faces"):
with gr.Row():
img1_input = gr.Image(label="First Image", type="pil")
img2_input = gr.Image(label="Second Image", type="pil")
with gr.Row():
verify_threshold = gr.Slider(minimum=0.1, maximum=0.9, value=0.6, step=0.05,
label="Similarity Threshold (lower = stricter matching)")
verify_model = gr.Dropdown(
choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
value="VGG-Face",
label="Face Recognition Model"
)
verify_button = gr.Button("Verify Faces", variant="primary")
verify_result_plot = gr.Plot(label="Verification Result")
verify_json = gr.JSON(label="Technical Details")
verify_button.click(
verify_faces,
inputs=[img1_input, img2_input, verify_threshold, verify_model],
outputs=[verify_result_plot, verify_json]
)
with gr.TabItem("Find Faces"):
query_img = gr.Image(label="Query Image (Face to find)", type="pil")
db_path_input = gr.Textbox(label="Database Path (folder containing images to search in)")
db_files_input = gr.File(label="Or upload images for database", file_count="multiple")
with gr.Row():
find_threshold = gr.Slider(minimum=0.1, maximum=0.9, value=0.6, step=0.05,
label="Similarity Threshold (lower = stricter matching)")
find_model = gr.Dropdown(
choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
value="VGG-Face",
label="Face Recognition Model"
)
find_button = gr.Button("Find Matching Faces", variant="primary")
find_result_plot = gr.Plot(label="Search Results")
find_results_table = gr.JSON(label="Detailed Results")
find_button.click(
find_faces,
inputs=[query_img, db_path_input, find_threshold, find_model],
outputs=[find_result_plot, find_results_table]
)
db_files_input.change(
lambda x: "",
inputs=db_files_input,
outputs=db_path_input
)
with gr.TabItem("Analyze Face"):
analyze_img = gr.Image(label="Upload Image for Analysis", type="pil")
actions_checkboxes = gr.CheckboxGroup(
choices=["age", "gender", "race", "emotion"],
value=["age", "gender", "race", "emotion"],
label="Select Attributes to Analyze"
)
analyze_button = gr.Button("Analyze Face", variant="primary")
analyze_result_plot = gr.Plot(label="Analysis Results")
analyze_json = gr.JSON(label="Detailed Analysis")
analyze_button.click(
analyze_face,
inputs=[analyze_img, actions_checkboxes],
outputs=[analyze_result_plot, analyze_json]
)
demo.launch() |